Purpose - Foreign Exchange Rates (FER) have been one of the most significant factors for both Korean exporters and the economy of Korea. The purpose of this study is to evaluate whether exporters with a high level of Exchange Rate Elasticity of Sales (ERES) make the use of earnings management for Income Smoothing (IS). Design/methodology - Income smoothing was obtained using the methodology suggested by Leuz, Nanda and Wysocki (2003). Accruals-based Earnings Management (AEM) was estimated using Discretionary Accruals (DA) calculated by the operant Jones Model developed by Dechow, Sloan and Sweeney (1995). Real Earnings Management (REM) was obtained using the methodologies suggested by Roychowdhury (2006) and Cohen and Zarowin (2010). Data were 2,402 firm years of public listed companies on the KRX, which were not in the financial industry and had a settlement of accounts in December for the period from 2013 to 2017. Findings - Results of the evaluation are as follows. First, companies with higher levels of ERES have relatively lower levels of smoothing of reported income. This might be because a fluctuation in sales caused by an exchange rate fluctuation has a direct impact on the volatility of the reported income. Second, companies with high levels of both ERES and IS have a positive correlation with both AEM and REM. This might be because companies with high levels of IS engage in earnings management to smooth reported income. Specifically, it is possible to assume that for smoothing the reported income, not only AEM but also REM is practiced. Third, companies with high levels of ERES but low levels of IS have a negative correlation with both AEM and REM. This could be interpreted as companies exhibiting low levels of IS due to higher levels of ERES tend to control IS. In addition, such results were supported by firms relying highly on exporting, and are consequently sensitive to exchange rate fluctuation. Therefore, it may conclude that companies with high levels of ERES make the use of earnings management as a means of IS. Originality/value - This study can find its significance from the fact that it is the first study, empirically verifying that companies of Korea, where exportation is a large part, use both AEM and REM as a means for smoothing reported income upon facing exchange rate fluctuations. In addition, it is highly expected that the results of this study could be useful for participants of financial markets when making IS-related decisions.
As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.
KIPS Transactions on Software and Data Engineering
/
v.10
no.7
/
pp.279-286
/
2021
Recently, We are carrying out a policy of physical distancing of at least 1m from each other to prevent the spreading of COVID-19 disease in public places. In this paper, we propose a method for measuring distances between people in real time and an automation system that recognizes objects that are within 1 meter of each other from stereo images acquired by drones or CCTVs according to the estimated distance. A problem with existing methods used to estimate distances between multiple objects is that they do not obtain three-dimensional information of objects using only one CCTV. his is because three-dimensional information is necessary to measure distances between people when they are right next to each other or overlap in two dimensional image. Furthermore, they use only the Bounding Box information to obtain the exact coordinates of human existence. Therefore, in this paper, to obtain the exact two-dimensional coordinate value in which a person exists, we extract a person's key point to detect the location, convert it to a three-dimensional coordinate value using Stereo Vision and Camera Calibration, and estimate the Euclidean distance between people. As a result of performing an experiment for estimating the accuracy of 3D coordinates and the distance between objects (persons), the average error within 0.098m was shown in the estimation of the distance between multiple people within 1m.
Ahn, Young Eun;Hong, Kue Hyon;Lee, Kwan Ho;Woo, Young Hoe;Cho, Myeong Cheoul;Lee, Jun Gu;Hwang, Indeok;Ahn, Yul Kyun
Journal of Bio-Environment Control
/
v.28
no.3
/
pp.212-217
/
2019
Bacterial wilt caused by Ralstonia solanacearum is a major disease that affects tomato plants widely. R. solanacearum is a soil born pathogen which limits the disease control measures. Therefore, breeding of resistant tomato variety to this disease is important. To identify the susceptible variety, degree of disease resistance has to be determined. In this study, micro sap flow sensor is used for accurate prediction of resistant degree. The sensor is designed to measure sap flow and water use in stems of plants. Using this sensor, the susceptibility to bacterial wilt disease can be identified two to three days prior to the onsite of symptoms after innoculation of R. solanacearum. Thus, this find of diagnosis approach can be utilized for the early detection of bacterial wilt disease.
Purpose: This study examined the antioxidant and cancer cell growth inhibitory activities of an ethanol extract and different solvent fractions of Mesembryanthemum crystallinum L. (ice plant). Methods: The ice plant was freeze-dried, extracted with 99.9% ethanol, and then fractionated with hexane, ethyl acetate, butanol, and water. The total polyphenol content (TPC), total carotenoid content (TCC), 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity (RSA), and ferric reducing antioxidant power (FRAP) were measured. Assays using 2',7'-dichlorofluorescin-diacetate and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide were performed to measure the intracellular reactive oxygen species (ROS) and cell growth, respectively. Annexin V/propidium iodide staining and cell cycle analysis were performed for the detection of apoptosis and cell cycle arrest. Results: TPC, TCC, RSA, and FRAP of the ethanol extract (EE) were 3.7 mg gallic acid equivalent/g, $13.2{\mu}g/g$, 21.0% (at a concentration of 5 mg/mL), and 21.0% (at a concentration of 5 mg/mL), respectively. Among the different solvent fractions, the butanol fraction (BF) showed the highest TPC (5.4 mg gallic acid equivalent/g), TCC ($86.6{\mu}g/g$), RSA (34.9% at 5 mg/mL), and FRAP (80.8% at 5 mg/mL). Treatment of HCT116 human colon cancer cells with EE and BF at concentrations of 250 and $500{\mu}g/mL$ reduced the levels of intracellular ROS. Concomitantly, EE and BF resulted in the dose-dependent inhibition of cell growth (at the concentrations of 125, 250, and $500{\mu}g/mL$ for 24 ~ 48 h) and the induction of apoptosis (at the concentrations of 250 and $500{\mu}g/mL$ for 48 h) in HCT116 cells. An increased G2/M cell population was also found in the BF-treated cells. Conclusion: These results suggest that ice plant possesses antioxidant and growth inhibitory activities in colon cancer cells.
In this paper, we introduce evaluation method of time series prediction model with new approach of Mean Absolute Percentage Error(hereafter MAPE) and Symmetric Mean Absolute Percentage Error(hereafter sMAPE). There are some problems using MAPE and sMAPE. First MAPE can't evaluate Zero observation of dataset. Moreover, when the observed value is very close to zero it evaluate heavier than other methods. Finally it evaluate different measure even same error between observations and predicted values. And sMAPE does different evaluations are made depending on whether the same error value is over-predicted or under-predicted. And it has different measurement according to the each sign, even if error is the same distance. These problems were solved by Maximum Mean Absolute Percentage Error(hereafter mMAPE). we used the absolute maximum of observed value as denominator instead of the observed value in MAPE, when the value is less than 1, removed denominator then solved the problem that the zero value is not defined. and were able to prevent heavier measurement problem. Also, if the absolute maximum of observed value is greater than 1, the evaluation values of mMAPE were compared with those of the other evaluations. With Beijing PM2.5 temperature data and our simulation data, we compared the evaluation values of mMAPE with other evaluations. And we proved that mMAPE can solve the problems that we mentioned.
In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.1-9
/
2022
Localization systems can be used with various circumstances like measuring population movement and rescue technology, even in security technology (like infiltration detection system). Vision sensors such as camera often used for localization is susceptible with light and temperature, and can cause invasion of privacy. In this paper, we used ultra-wideband radar technology (which is not limited by aforementioned problems) and machine learning techniques to measure the number and location of occupants in other indoor spaces behind the wall. We used four different algorithms and compared their results, including extremely randomized tree for four different situations; detect the number of occupants in a classroom, split the classroom into 28 locations and check the position of occupant, select one out of the 28 locations, divide it into 16 fine-grained locations, and check the position of occupant, and checking the positions of two occupants (existing in different locations). Overall, four algorithms showed good results and we verified that detecting the number and location of occupants are possible with high accuracy using machine learning. Also we have considered the possibility of service expansion using the oneM2M standard platform and expect to develop more service and products if this technology is used in various fields.
Korean Journal of Agricultural and Forest Meteorology
/
v.24
no.3
/
pp.179-189
/
2022
Ice and water droplets rise and fall above the freezing altitude under the effects of strong updrafts and downdrafts, grow into hail, and then fall to the ground in the form of balls or irregular lumps of ice. Although such hail, which occurs in a local area within a short period of time, causes great damage to the agricultural and forestry sector, there is a paucity of domestic research toward predicting hail. The objective of this study was to introduce Land-Atmosphere Modeling Package (LAMP) hail prediction and measure its performance for 50 hail events that occurred from January 2020 to July 2021. In the study period, the frequency of occurrence was high during the spring and during afternoon hours. The average duration of hail was 15 min, and the average diameter of the hail was 1 cm. The results showed that LAMP predicted hail events with a detection rate of 70%. The hail prediction performance of LAMP deteriorated as the hail prediction time increased. The radar reflectivity of actual cases of hail indicated that the average maximum reflectivity was greater than 40 dBZ regardless of altitude. Approximately 50% of the hail events occurred when the reflectivity ranged from 30~50 dBZ. These results can be used to improve the hail prediction performance of LAMP in the future. Improved hail prediction performance through LAMP should lead to reduced economic losses caused by hail in the agricultural and forestry sector through preemptive measures such as net coverings.
KIPS Transactions on Computer and Communication Systems
/
v.12
no.2
/
pp.85-92
/
2023
Respiratory infections such as COVID-19 mainly occur within enclosed spaces. The presence or absence of abnormal symptoms of respiratory infectious diseases is judged through initial symptoms such as fever, cough, sneezing and difficulty breathing, and constant monitoring of these early symptoms is required. In this paper, image matching correction was performed for the RGB camera module and the thermal imaging camera module, and the temperature of the thermal imaging camera module for the measurement environment was calibrated using a blackbody. To detection the target recommended by the standard, a deep learning-based object recognition algorithm and the inner canthus recognition model were developed, and the model accuracy was derived by applying a dataset of 100 experimenters. Also, the error according to the measured distance was corrected through the object distance measurement using the Lidar module and the linear regression correction module. To measure the performance of the proposed model, an experimental environment consisting of a motor stage, an infrared thermography temperature screening system and a blackbody was established, and the error accuracy within 0.28℃ was shown as a result of temperature measurement according to a variable distance between 1m and 3.5 m.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.