DOI QR코드

DOI QR Code

Analysis of Bacterial Wilt Symptoms using Micro Sap Flow Sensor in Tomatoes

식물 생체정보 센서를 활용한 토마토 풋마름병 증상 분석

  • Ahn, Young Eun (Department of Vegetable crops, Korea National College of Agriculture and Fisheries) ;
  • Hong, Kue Hyon (Department of Vegetable crops, Korea National College of Agriculture and Fisheries) ;
  • Lee, Kwan Ho (Department of Vegetable crops, Korea National College of Agriculture and Fisheries) ;
  • Woo, Young Hoe (Department of Vegetable crops, Korea National College of Agriculture and Fisheries) ;
  • Cho, Myeong Cheoul (Vegetable Research Division, National Institute of Horticultural & Herbal Science) ;
  • Lee, Jun Gu (Department of Horticulture, Chonbuk National University) ;
  • Hwang, Indeok (R&D Center, Bunongseed Co., Ltd.) ;
  • Ahn, Yul Kyun (Department of Vegetable crops, Korea National College of Agriculture and Fisheries)
  • 안영은 (한국농수산대학 채소학과) ;
  • 홍규현 (한국농수산대학 채소학과) ;
  • 이관호 (한국농수산대학 채소학과) ;
  • 우영회 (한국농수산대학 채소학과) ;
  • 조명철 (국립원예특작과학원 채소과) ;
  • 이준구 (전북대학교 원예학과) ;
  • 황인덕 (부농종묘(주)) ;
  • 안율균 (한국농수산대학 채소학과)
  • Received : 2019.05.13
  • Accepted : 2019.06.19
  • Published : 2019.07.30

Abstract

Bacterial wilt caused by Ralstonia solanacearum is a major disease that affects tomato plants widely. R. solanacearum is a soil born pathogen which limits the disease control measures. Therefore, breeding of resistant tomato variety to this disease is important. To identify the susceptible variety, degree of disease resistance has to be determined. In this study, micro sap flow sensor is used for accurate prediction of resistant degree. The sensor is designed to measure sap flow and water use in stems of plants. Using this sensor, the susceptibility to bacterial wilt disease can be identified two to three days prior to the onsite of symptoms after innoculation of R. solanacearum. Thus, this find of diagnosis approach can be utilized for the early detection of bacterial wilt disease.

본 연구는 토마토의 풋마름병 감염 여부를 더 빠르게 예측하고 객관적으로 평가하기 위해 수행되었다. 이를 위해 식물 생체정보 센서를 이용하여 풋마름 병원균을 접종한 토마토에서 풋마름병에 감염되어 증상을 보이기까지의 식물체의 양수분 이동 속도를 측정하였다. 토마토의 양수분 이동 속도를 측정했을 때 육안으로 보이는 풋마름 증상이 나타나기 약 2 내지 3일 전부터 풋마름병에 감염된 토마토의 양수분 이동 속도가 감염되지 않은 토마토에 비해 감소하는 것을 볼 수 있었고 이 결과는 생물검정과 생육조사 결과와도 일치하는 것을 볼 수 있었다. 따라서 이상의 결과를 볼 때 식물 생체정보 센서를 이용하여 식물의 양수분 이동 속도를 측정함으로써 풋마름병을 조기 진단할 수 있음을 알 수 있었다.

Keywords

References

  1. Baek, S.W., E.Y. Jeon, K.S. Park, K.H. Yeo, and J.H. Lee. 2018. Monitoring of water transportation in plant stem with microneedle sap flow sensor. Journal of microelectromechanical systems 27(3):440-447 https://doi.org/10.1109/JMEMS.2018.2823380
  2. Foolad, M.R. and D.R. Panthee. 2012 Marker-assisted selection in tomato breeding. CRC Cri Rev Plant Sci 31:93-123 https://doi.org/10.1080/07352689.2011.616057
  3. Hayward, A.C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann. Rev. Phytopathol. 29: 65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  4. Jang, M., I. Hwangbo, J.B. Seo, Y.S. Lee, K.C. Ma, B.S. Kim, and B.K. Yoon. 2015. Quantity Enhancement Effect by Native Rootstock Sort of Squash (Cucurbita maxima). Agricultural Science & Technology Research Vol. 50. (in Korean)
  5. Jo J.A., H.S. Choi, and J.G. Lee. Variation of Major Carotenoid Contents among Tomato Breeding Lines Using Rapid Analysis Techniques. 2014. Journal of Agriculture & Life Sciences. Vol. 45(1):12-17. (in Korean)
  6. Jung, E.J., H.J. Joo, S.Y. Choi, S.Y. Lee, Y.H. Jung, M.H. Lee, H.G. Kong and S.W. Lee. 2014. Resistance evaluation of tomato germplasm against bacterial wilt by Ralstonia solanacearum. Plant Dis 20:253-258. (in Korean) https://doi.org/10.5423/RPD.2014.20.4.253
  7. Kelman, A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44: 693-695.
  8. Kim, S.G., O.S. Hur, N.Y. Ro, H.C. Ko, J.H. Rhee, J.S. Sung, K.Y. Ryu, S.Y. Lee, and H.J. Baek. 2015. Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage. Plant Pathol. J. 31: 1-7 https://doi.org/10.5423/PPJ.RW.08.2014.0074
  9. Lee, Y.J. and B.S. Kim. 2017. Resistance to bacterial wilt of rootstock varieties of tomato and graft compatibility. Res. Plant Dis. 23: 228-233. (in Korean) https://doi.org/10.5423/RPD.2017.23.3.228
  10. Lim, Y.S., M.J. Lee, J.D. Cheung, Y.H. Rew, and B.S. Kim. 2008. Occurrence and biovar classification of bacterial wilt caused by Ralstonia solanacearum in eggplant (Solanum melongena). Res. Plant Dis. 14: 10-14. (In Korean). https://doi.org/10.5423/RPD.2008.14.1.010
  11. Peralta, I.E. and D.M. Spooner. 2007. History, origin and early cultivation of tomato (solanaceae). In: Genetic improvement of solanaceous crops, eds. by M. K. Razdan and A. K. Mattoo, pp. 1-24. Science publishers, Enfield, NH, USA.
  12. Roberts, D.P., T.P. Denny, and M.A. Schell. 1988. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in Phytopathogenicity. J. Bacteriol. 170: 1445-1451. https://doi.org/10.1128/jb.170.4.1445-1451.1988
  13. Schell, M.A. 2000. Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Ann. Rev. Phytopathol. 38:263-292. https://doi.org/10.1146/annurev.phyto.38.1.263
  14. Shin, Y.S., Y.J. Seo, I.K Yeon, H.W. Do, J.E. Lee, C.D. Choi, S.D. Park, and B.S. Kim. 2006. Effect on Plant Growth, Fruit Elongation and Quality by Rootstock Sort of Oriental Melon(Cucumis melo L. var makuwa Makino). Protected Horticulture and Plant Factory, 15(4):358-363. (in Korean)
  15. Tahat, M.M. and K. SiJam. 2010. Ralstonia solanacearum: the bacterial wilt causal agent. Asian J. PI. Sci. 9:385-393. https://doi.org/10.3923/ajps.2010.385.393
  16. Toma R.B., G.C. Frank, K. Nakayama, and E. Fawfik. 2008. Lycopene content in raw tomato varieties and tomato products. J. Food Service 19:127-132.