DOI QR코드

DOI QR Code

Qualitative Verification of the LAMP Hail Prediction Using Surface and Radar Data

지상과 레이더 자료를 이용한 LAMP 우박 예측 성능의 정성적 검증

  • 이재용 (국가농림기상센터) ;
  • 이승재 (국가농림기상센터) ;
  • 심교문 (국립농업과학원 기후변화평가과)
  • Received : 2021.11.15
  • Accepted : 2022.04.26
  • Published : 2022.09.30

Abstract

Ice and water droplets rise and fall above the freezing altitude under the effects of strong updrafts and downdrafts, grow into hail, and then fall to the ground in the form of balls or irregular lumps of ice. Although such hail, which occurs in a local area within a short period of time, causes great damage to the agricultural and forestry sector, there is a paucity of domestic research toward predicting hail. The objective of this study was to introduce Land-Atmosphere Modeling Package (LAMP) hail prediction and measure its performance for 50 hail events that occurred from January 2020 to July 2021. In the study period, the frequency of occurrence was high during the spring and during afternoon hours. The average duration of hail was 15 min, and the average diameter of the hail was 1 cm. The results showed that LAMP predicted hail events with a detection rate of 70%. The hail prediction performance of LAMP deteriorated as the hail prediction time increased. The radar reflectivity of actual cases of hail indicated that the average maximum reflectivity was greater than 40 dBZ regardless of altitude. Approximately 50% of the hail events occurred when the reflectivity ranged from 30~50 dBZ. These results can be used to improve the hail prediction performance of LAMP in the future. Improved hail prediction performance through LAMP should lead to reduced economic losses caused by hail in the agricultural and forestry sector through preemptive measures such as net coverings.

우박은 강한 상승 기류에 의하여 빙결 고도 이상에서 수적이 상승과 하강을 반복함에 따라 얼음덩어리로 성장 후 지상으로 낙하하는 현상을 의미한다. 이러한 우박은 단기간 내 국지적인 영역에서 발생하여 농림업 분야에 큰 피해를 미치지만 우박에 대한 예측을 수행하는 국내 연구는 부족한 실정이다. 이에 본 연구에서는 국가농림기상센터 LAMP를 이용한 우박 예측을 소개하고, 2020년 1월부터 2021년 7월까지 발생한 50개의 우박 사례에 대하여 LAMP 우박 예측 성능을 측정하였다. 본 연구에서 조사된 우박 사례의 경우 봄철에 주로 오후 시간대에 발생 빈도가 높았고, 우박의 지속 시간은 평균 15분이었으며, 우박의 직경은 1 cm로 나타났다. LAMP의 우박 예측 성능을 정성적으로 평가한 결과 50개의 사례 가운데 35개 사례에 대하여 우박 예측에 성공하여 탐지율은 70%로 나타났다. LAMP의 우박 예측 성능은 우박을 예측하는 시간이 길어짐에 따라 저하된 것으로 사료된다. 실제 우박 사례에 대한 레이더 반사도를 조사한 결과, 고도에 무관하게 최대 반사도가 40 dBZ 이상이었고, 우박 사례의 약 50%가 30~50 dBZ 사이로 나타났는데, 이러한 결과는 현재 LAMP의 우박 예측 성능을 향후 보완하기 위한 자료로 활용될 것이다. LAMP를 활용한 우박 예측 성능이 향상됨으로써 농림업 분야에서 망 피복 등의 선제적 조치를 통해 우박에 의한 경제적 손실이 줄어들 것으로 기대된다.

Keywords

Acknowledgement

이 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업(과제번호: PJ01487905)의 지원으로 수행되었습니다.

References

  1. Danielsen, E. F., 1977: Inherent difficulties in hail probability prediction. In Hail: A Review of Hail Science and Hail Suppression (pp. 135-143). American Meteorological Society, Boston, MA. doi:10.1007/978-1-935704-30-0_6.
  2. Im, E. H., Y. S. Jeong, and J. C. Nam, 2000: Characteristics of hail occurred in the Korea Peninsular. Journal of Korea Water Resources Association 33(2), 229-235. (in Korean with English abstract)
  3. Jin, H. G., H. Lee, J. Lkhamjav, and J. J. Baik, 2017: A hail climatology in South Korea. Atmospheric Research 188, 90-99. https://doi.org/10.1016/j.atmosres.2016.12.013
  4. Kim, S., S.-J. Lee, and K. M. Shim, 2020: Creating a South Korean hail risk map based on data fusion. In AGU Fall Meeting Proceedings 2020, A214-0011.
  5. KMA (Korea Meteorological Administration), 2012: Hail determination guidance based on high-rise observation data. (in Korean)
  6. KMA (Korea Meteorological Administration), 2019: Weather Measures for Disaster Prevention in Summer. 97pp. (in Korean)
  7. Labriola, J., N. Snook, Y. Jung, B. Putnam, and M. Xue, 2017: Ensemble hail prediction for the storms of 10 May 2010 in south-central Oklahoma using single- and double-moment microphysical schemes. Monthly Weather Review 145(12), 4911-4936. https://doi.org/10.1175/MWR-D-17-0039.1
  8. Lee, S.-J., J. A. Song, and Y. J. Kim, 2016: The NCAM Land-Atmosphere Modeling Package (LAMP) version 1: implementation and evaluation. Korean Journal of Agricultural and Forest Meteorology 18(4), 307-319. https://doi.org/10.5532/KJAFM.2016.18.4.307
  9. Li, X., Q. Zhang, T. Zou, J. Lin, H. Kong, and Z. Ren, 2018: Climatology of hail frequency and size in China, 1980-2015. Journal of Applied Meteorology and Climatology 57(4), 875-887. https://doi.org/10.1175/JAMC-D-17-0208.1
  10. Loftus, A. M., and W. R. Cotton, 2014: A triplemoment hail bulk microphysics scheme. Part II: Verification and comparison with two-moment bulk microphysics. Atmospheric Research 150, 97-128. https://doi.org/10.1016/j.atmosres.2014.07.016
  11. Lopez, L., E. Garcia-Ortega, and J. L. Sanchez, 2007: A short-term forecast model for hail. Atmospheric Research 83(2-4), 176-184. https://doi.org/10.1016/j.atmosres.2005.10.014
  12. Lukach, M., L. Foresti, O. Giot, and L. Delobbe, 2017: Estimating the occurrence and severity of hail based on 10 years of observations from weather radar in Belgium. Meteorological Applications 24(2), 250-259. https://doi.org/10.1002/met.1623
  13. Martius, O., A. Hering, M. Kunz, A. Manzato, S. Mohr, L. Nisi, and S. Trefalt, 2018: Challenges and recent advances in hail research. Bulletin of the American Meteorological Society 99(3), ES51-ES54. https://doi.org/10.1175/BAMS-D-17-0207.1
  14. Marzban, C., and A. Witt, 2001: A Bayesian neural network for severe-hail size prediction. Weather and Forecasting 16(5), 600-610. https://doi.org/10.1175/1520-0434(2001)016<0600:ABNNFS>2.0.CO;2
  15. Snook, N., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016: Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Weather and Forecasting 31(3), 811-825. https://doi.org/10.1175/WAF-D-15-0152.1
  16. Stoelinga, M. T., 2005: Simulated equivalent reflectivity factor as currently formulated in RIP: Description and possible improvements. White paper 5.
  17. Tuovinen, J. P., A. J. Punkka, J. Rauhala, H. Hohti, and D. M. Schultz, 2009: Climatology of severe hail in Finland: 1930-2006. Monthly Weather Review 137(7), 2238-2249. https://doi.org/10.1175/2008MWR2707.1