• Title/Summary/Keyword: destructive tests

Search Result 253, Processing Time 0.022 seconds

Dynamic characteristics of combined isolation systems using rubber and wire isolators

  • Lee, Seung-Jae;Truong, Gia Toai;Lee, Ji-Eon;Park, Sang-Hyun;Choi, Kyoung-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1071-1084
    • /
    • 2022
  • The present study aims to investigate the dynamic properties of a novel isolation system composed of separate rubber and wire isolators. The testing program comprised pure compressive, pure-shear, compressive-stress dependence, and shear-strain dependence tests that used full-scale test specimens according to ISO 22762-1. A total of 22 test specimens were fabricated and investigated. Among the tests, the pure compressive test was a destructive test that reached up to the failure stage, whereas the others were nondestructive tests before the failure stage. Similar to the pure-shear test, at each compressive-stress level in the compressive dependence test or at each shear-strain level in the shear-strain dependence test, the cyclic loading was conducted for three cycles. In the nondestructive tests, examination of the dynamic shear properties in the X-direction was independent of the Y-direction. The test results revealed that the increase in the shear strain increased the energy dissipation but decreased the damping ratio, whereas the increase in the compressive stress increased the damping ratio. In addition, a macro model was developed to simulate the load-displacement response of the isolation systems, and the prediction results were consistent with the experimental results.

A Study on Manufacturing Method of Standard Void Specimens for Non-destructive Testing in RFI Process and Effect of Void on Mechanical Properties (RFI 공정 부품 비파괴검사용 표준 기공률 시편 제조 방법 및 기공률에 따른 기계적 물성 영향에 대한 연구)

  • Han, Seong-Hyeon;Lee, Jung-Wan;Kim, Jung-Soo;Kim, Young-Min;Kim, Wee-Dae;Um, Moon-Kwang
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2019
  • The RFI process is an OoA process that fiber mats and resin films are laminated and cured in a vacuum bag. In case that resin film is insufficient to fill empty space in fibers, it makes void defect in composites and this void decrease mechanical properties of the composites. For this reason, non-destructive testing is usually used to evaluate void of manufactured composites. So, in this study, a manufacturing method of standard void specimens, which are able to be used as references in non-destructive testing, was proposed by controlling resin film thickness in the RFI process. Also, a fiber compaction test was proposed as a method to set the resin film thicknesses depending on target voids of manufacturing panels. The target void panels of 0%, 2%, and 4% were made by the proposed methods, and signal attenuation depending on void was measured by non-destructive testing and image analysis. In addition, voids of specimens for tensile, in-plane, short beam and compressive tests were estimated by signal attenuation, and mechanical properties were evaluated depending on the voids.

A Study on the Error Rate of Non-destructive Rebar Detection Under Different Environmental Factors (환경적 요인에 따른 비파괴 철근 탐사의 오차율에 관한 연구)

  • Kang, Beom-Ju;Kim, Young-Hwan;Kim, Young-Min;Park, Kyung-Han;Oh, Hong-Seob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.506-513
    • /
    • 2021
  • The durability and safety of reinforced concrete structures significantly depend on the reinforcement conditions, concrete cover thickness, cracks, and concrete strength. There are two ways to accurately determine the information on reinforcing bars embedded in concrete - the local destructive method and the non-destructive rebar detection test. In general, the non-destructive rebar detection tests, such as the electromagnetic wave radar method, electromagnetic induction method, and radiation method, are adopted to avoid damage to the structural elements. The moisture content and temperature of concrete affect the dielectric constant, which is the electrical property of concrete, and cause interference in the non-destructive rebar detection test results. Therefore, in this study, the effects of the electromagnetic wave radar method and electromagnetic induction method have been analyzed according to the temperature and surface moisture content of concrete. Due to the technological advancement and development of equipment, the average error rate was less than 5% in the specimens at 24℃, irrespective of their operating principles. Among the tested methods, the electromagnetic induction method showed very high accuracy. The electromagnetic wave radar method indicated a relatively small error rate in the dry state than in the wet state, and exhibited a relatively high error rate at high temperatures. It was confirmed that the error could be reduced by applying the electromagnetic wave radar method when the temperature of the probe was low and in a dry state, and by using the electromagnetic induction method when the probe was in a wet state or at a high temperature.

Performance of Different Sensors for Monitoring of the Vibration Generated during Thermosonic Non-destructive Testing

  • Kang, Bu-Byoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Vibration monitoring is required for reliable thermosonic testing to decide whether sufficient vibration is achieved in each test for the detection of cracks. From a practical point of view, a cheaper and convenient monitoring method is better for the application to real tests. Therefore, the performance of different sensors for vibration monitoring was investigated and compared in this study to find a convenient and acceptable measurement method for thermosonics. Velocity measured by a laser vibrometer and strain provide an equivalent HI when measured at the same position. The microphone can provide a cheaper vibration monitoring device than the laser and the heating index calculated by a microphone signal shows similar characteristics to that calculated from velocity measured by the laser vibrometer. The microphone frequency response shows that it underestimates high frequency components but it is applicable to practical tests because it gives a conservative value of HI.

The Investigation of the In-Situ state to Determine the paved Track Structure (포장궤도 구조결정을 위한 현장상태 조사)

  • Lee Il-Wha;Hwang Seon-Keun;Park Tae-Soon;Lee Bo-Hyoung;Ko Hak-Song
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.974-979
    • /
    • 2004
  • Recently, the development of paved track is required as a Low-maintenance of conventional line. The most important factor of paved track is stability and applicability. In this method, the ballast is grouted with mortar so that the ballast can turn into a structure like slab. This method can be subdivided into the followings. One is the method with switching the ballast, and the other is without switching the ballast. The ordinary and actual states of the ballast and roadbed were investigated to evaluate the applicability of the paved track structure in this study, and various In-situ tests were applied. Non-destructive tests such as GPR, SASW, FWD were used, and bearing capacity of roadbed, depth of the ballast, and deterioration, penetration, and contamination of the ballast were focused. The result of this investigation was utilized in the selection of optimal paved track structure and data for preliminary design.

  • PDF

Damage Detection of Apartment Building- using Modal Properties (동특성을 이용한 벽식구조 아파트건물의 손상도 추정)

  • 천영수;김홍식;김하근;강경완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.577-582
    • /
    • 2001
  • Identification of damage of structures has recently received considerable attention in the light of maintenance and safety assessment under service loads. In buildings, the current techniques of safety assessment largely depend on partial experiments such as visual inspection, destructive and nondestructive tests which lead to overconsumption of time and cost as well as higher labor intensity. Therefore, a new trial for safety assessment is urgently needed today. In this respect, the vibration characteristics of buildings have been applied steadily to obtain a damage index of the whole building, but it cannot be established as a practical method until now. This study is aimed at investigating the application of damage identification methods using vibration characteristics of building. Numerical tests are performed on a apartment building. From the test results, it is observed that severity and location of damage can be estimated with a relatively small error by using natural frequency and mode shape data.

  • PDF

Evaluation of Subgrade State in the Gyeongbu High Speed Railway through GPR tests and Drilling Boreholes (GPR탐사와 시추조사를 통한 경부고속철도 노반상태평가)

  • Park, Jun-O;Min, Hyeong-Gi;Jeon, Il-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.984-996
    • /
    • 2009
  • When evaluating the general subgrade states such as geology, stiffness, underground water, compaction and deformation in the Gyeongbu high speed railway, some applicable testing methods should be selected because lots of trains are currently running. The applicable methods includes not only non-destructive tests such as GPR test, electricity resistivity test, MASW proving, but also standard penetration test (SPT), core test, elastic wave tomography through drilling boreholes and measurements using settlement measuring system or inclinometer, etc. In order for evaluating the subgrade states in the Gyeongbu high speed ralway, this study performed GPR test in several sections and drilling boreholes whose locations were chosen after comparing GPR test results and track maintenance history. Furthermore, the progress of subgrade deformations was analysed by comparing previous and this time GPR test results. The results of this study shall be used to understand the general states of currently operating Gyeongbu high speed railway.

  • PDF

Design and Measurements of an RSFQ NDRO circuit (단자속 양자 NDRO 회로의 설계와 측정)

  • 정구락;홍희송;박종혁;임해용;강준희;한택상
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.76-78
    • /
    • 2003
  • We have designed and tested an RSFQ (Rapid Single Flux Quantum) NDRO (Non Destructive Read Out) circuit for the development of a high speed superconducting ALU (Arithmetic Logic Unit). When designing the NDRO circuit, we used Julia, XIC and Lmeter for the circuit simulations and layouts. We obtained the simulation margins of larger than $\pm$25%. For the tests of NDRO operations, we attached the three DC/SFQ circuits and two SFQ/DC circuits to the NDRO circuit. In tests, we used an input frequency of 1 KHz to generate SFQ Pulses from DC/SFQ circuit. We measured the operation bias margin of NDRO to be $\pm$15%. The circuit was measured at the liquid helium temperature.

  • PDF

Effect of oxide film on ECT detectability of surface IGSCC in laboratory-degraded alloy 600 steam generator tubing

  • Lee, Tae Hyun;Ryu, Kyung Ha;Kim, Hong Deok;Hwang, Il Soon;Kim, Ji Hyun;Lee, Min Ho;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1381-1389
    • /
    • 2019
  • Stress corrosion cracking (SCC) widely found in both primary and secondary sides of steam generator (SG) tubing in pressurized water reactors (PWR) has become an important safety issue. Using eddy-current tests (ECTs), non-destructive evaluations are performed for the integrity management of SG tubes against intergranular SCC. To enhance the reliability of ECT, this study investigates the effects of oxide films on ECT's detection capabilities for SCC in laboratory-degraded SG tubing in high temperature and high pressure aqueous environment.

Structural Behavior of Reinforced Concrete Slab Rigid-frame Bridge with H-Shaped Steel Girders

  • Nakai, Yoshiaki;Ha, Tuan Minh;Fukada, Saiji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1219-1241
    • /
    • 2018
  • This study aims towards the improvement of a reinforced concrete rigid-frame bridge in an effort to reduce the construction and maintenance costs, and achieve an improved seismic performance. Correspondingly, a new structural rigid connection is proposed for H-shaped steel girders and reinforcing bars at the corner of the rigid-frame structure. Both experiments and numerical analyses were performed. Prototype models were constructed and subjected to static loading tests to reveal their load-carrying capacity and failure mode. Numerical models were then developed using finite elements to evaluate the experimental results. Analyses elicited good agreement between simulation and experimental data and validated the numerical models. Moreover, the validity of the proposed rigid connection was confirmed, and the failure behavior was clarified. Finally, a full-size model of the reinforced concrete rigid-frame bridge with H-shaped steel girders was constructed and subjected to destructive loading tests to evaluate structural integrity of the proposed rigid connection.