• Title/Summary/Keyword: design rule

Search Result 1,611, Processing Time 0.035 seconds

Comparison Analysis on Requirements of Structural Members by Application of the Harmonized Common Structural Rules (통합공통구조규칙(CSR-H) 적용에 따른 구조 부재 요구치의 비교 분석)

  • Sung, Chi Hyun;Lee, Seung-Keon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.265-274
    • /
    • 2015
  • International organizations and classification societies established rules and regulations to which shipbuilders and ship operators should comply during design, construction, even operation keeping from hazard to life of crews and ocean environment. Hence, rules and regulations could be guidelines for design and construction of ship sometimes. In practical wise, ship structure designers be predisposed to design lightest and easy-to-product structures which satisfy rules and regulations. Therefore, changes of rules and regulations are remarkably important issue to related industries. In 2006, IACS established and released Common Structural Rules for Bulk Carrier and Common Structural Rules for Double Hull Oil Tanker. These CSRs are consolidated and unified rules of class society's rules. But these two rules are different from each other. IACS has plan to release unified rule of two ship type called Harmonized Common Structural Rule for Bulk Carriers and Oil Tankers. This new rule will be effective from July 2015. Hence, bulk carrier and double hull oil tanker whose contract date is on and thereafter July 2015 should be complied with CSR-H. Therefore, it is highly important to be aware of consequences and cause of consequences with respect to CSR-H. The object of this research is to compare requirements of structure scantling in way of midship area for selected target ship according to CSRs and CSR-H and to analysis cause of deviation between two rules.

Rule Based System for Selection of Foundation Types of Building Structures (건물의 기초 형식 선정을 위한 규칙 기반 시스템)

  • 김한수;최창근
    • Computational Structural Engineering
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1996
  • A rule based system for foundation design of building structures is developed with CLIPS in this study. The types of foundation and the allowable bearing capacity of supporting soil inferred by the rule based system for selection of foundation type, called SOFTEX, are transferred to a structural design program for building foundation. The allowable bearing capacity is calculated with N values of Standard Penetration Test. The foundation types such as independent spread footing, wall footing, combined footing and mat foundation can be inferred by the foundation merge procedure developed in this study. This procedure is based on the analysis data from the super structure and the estimated bearing capacity. By using this integrated system, structural engineers with less experience in foundation design can design the foundation system for the given superstructure and the site condition with relative ease.

  • PDF

A Study on Composite Blades of 1 MW Class HAWT Considering Fatigue Life (피로수명을 고려한 1 MW급 수평축 풍력터빈 복합재 블레이드 설계에 관한 연구)

  • Kim, Min-Woong;Kong, Chang-Duk;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.564-573
    • /
    • 2012
  • In this work, 1 MW class horizontal axis wind turbine blade configuration is properly sized and analyzed using the newly proposed aerodynamic design procedure and the in-house code developed by authors, and its design results are verified through comparison with experimental results of previously developed wind turbine blade. The structural design of the wind turbine blade is carried out using a composite materials and the netting and rule of mixture deign methods. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation, buckling and vibration analyses using the commercial FEM code, MSC.NASTRAN. Finally the required fatigue life is investigated using the modified Spera's experimental equation.

Development of an Expert System for Design of High Performance Compressor Valve System (고성능 압축기 밸브시스템의 설계를 위한 전문가 시스템의 개발)

  • 성기룡;최일곤;맹주성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.153-163
    • /
    • 1996
  • An expert system to design compressor valve systems has been developed. Design process is viewed as a chain of devisions based on the results of necessary analyses. Actual design is implemented by the interaction between the expert system and the user. In this work, it is demonstrated how a final design is achieved by utilizing the rule bases and analysis capability of the system. The structure of the rule bases and related parameter studies are also explained. Advantages of using an expert system approach for valve designs are explained using a practical example.

  • PDF

Maximum Likelihood (ML)-Based Quantizer Design for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.152-158
    • /
    • 2015
  • We consider the problem of designing independently operating local quantizers at nodes in distributed estimation systems, where many spatially distributed sensor nodes measure a parameter of interest, quantize these measurements, and send the quantized data to a fusion node, which conducts the parameter estimation. Motivated by the discussion that the estimation accuracy can be improved by using the quantized data with a high probability of occurrence, we propose an iterative algorithm with a simple design rule that produces quantizers by searching boundary values with an increased likelihood. We prove that this design rule generates a considerably reduced interval for finding the next boundary values, yielding a low design complexity. We demonstrate through extensive simulations that the proposed algorithm achieves a significant performance gain with respect to traditional quantizer designs. A comparison with the recently published novel algorithms further illustrates the benefit of the proposed technique in terms of performance and design complexity.

Structural Design and Analysis for Small Wind Turbine Blade (초소형 풍력발전용 블레이드에 대한 구조설계 몇 해석)

  • Lee, Seung-Pyo;Kang, Ki-Weon;Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.288-294
    • /
    • 2010
  • In recent years, wind energy has been the world's fastest growing source of energy. This paper describes the structural design and analysis of composite blade for 2 kW-level HAWT (horizontal axis wind turbine). The aerodynamic design and force, which are required to design and analyze a composite blade structurally, are calculated through BEMT(blade element momentum theory) implemented in public code PROPID. To obtain the equivalent material properties of filament wound composite blades, the rule-of-mixture is applied using the basic material properties of fiber and matrix, respectively. Lay-up sequence, ply thickness and ply angle are designed to satisfy the loading conditions. Structural analysis by using commercial software ABAQUS is performed to compute the displacement and strength ratio of filament wound composite blades.

The Design of IMC-PID Controller Considering a Phase Scaling Factor (위상 조절 인자를 고려한 IMC-PID 제어기의 설계)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1618-1623
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain and phase margins, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

Extracting Method of Kansei Design Rules Based on Rough Set Analysis

  • Nishino, Tatsuo;Nagamachi, Mitsuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.201-204
    • /
    • 2002
  • Kansei design knowledge acquisition stage is a crucial stage in kansei designing process and kansei engineering (KE) methodology. In kansei engineering methodology, it is essential to extract design knowledge or rules on relationships between customer's kansei and product design element. We attempt to construct a more powerful melted for extracting the design rules from kansei expremental data. We constucted a kansei experiment concerning color kansei evaluation, and analyzed the sane data by both conventional quantification theory type I and rough set theory. Finally, we compared the effectiveness of both methods for extracting rules and examined the extensions of rough set theory in kansei engineering.

  • PDF

Using Prolog/XML for business rules implementation system design (Prolog/XML를 이용한 비즈니스 룰(Business Rule) 분석 시스템 설계)

  • 권순덕;이원조;이단영;고재진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.94-96
    • /
    • 2002
  • 본 논문에서는 EDI(Electronic Data Interchange)와 WorkFlow 시스템에서 가지고 있는 비즈니스 룰 (Business Rule)을 논리 프로그램인 Prolog를 이용해서 각 비즈니스 룰을 분석하고 각각의 프로세스를 완전한 수행을 할 수 있는 시스템을 설계한다.

  • PDF

Statistical design of Shewhart control chart with runs rules (런 규칙이 혼합된 슈와르트 관리도의 통계적 설계)

  • Kim, Young-Bok;Hong, Jung-Sik;Lie, Chang-Hoon
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.3
    • /
    • pp.34-44
    • /
    • 2008
  • This research proposes a design method based on the statistical characteristics of the Shewhart control chart incorporated with 2 of 2 and 2 of 3 runs rules respectively. A Markov chain approach is employed in order to calculate the in-control and out-of-control average run lengths(ARL). Two different control limit coefficients for the Shewhart scheme and the runs rule scheme are derived simultaneously to minimize the out-of-control average run length subject to the reasonable in-control average run length. Numerical examples show that the statistical performance of the hybrid control scheme are superior to that of the original Shewhart control chart.