• Title/Summary/Keyword: design of the feedback controller

Search Result 1,009, Processing Time 0.036 seconds

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

Reduced-order Controller Design using Projective Controls (투영제어 기법을 이용한 제어기의 저차수화 설계)

  • Sang-Woo Nam
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.943-951
    • /
    • 1995
  • In this paper the projective controls, previously derived to preserve the dynamic modes of a state-feedback reference system, are extended to allow the preservation of the modes of a general output-feedback reference system. In general, the extension allows projective controls to be used as a controller approximation technique, where a reduced-order controller is designed to approximate the closed-loop behavior of the higher-order reference controller. This extension is useful if the best available reference control for the system is an output-feedback control. An example shows that the increased design freedom of proposed design method allows the stabilization of a given plant using a lower-order controller than the projective controls with state-feedback reference.

  • PDF

Analysis and Design of the State Feedback Current Controller's Gain (상태 궤환 전류 제어기의 이득 분석 및 설계)

  • Lee, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.982-983
    • /
    • 2006
  • This paper deals with an analysis and design of the state feedback current controller's gain in the three-phase current control systems. First, this paper derives the transfer function of the closed loop current control system and also compares the state feedback current controller with the conventional proportional integral controller. A new pole placement method by using the pole/zero cancellation method is proposed to give a simple and concrete concept with respect to the pole selection. Experimental results on the permanent magnet synchronous motor show that the proposed method is very useful to design the gain of the state feedback current controller.

  • PDF

H$\infty$ State Feedback Control for Generalized Continuous/Discrete Time Delay System

  • Kim, Jong-Hae;Jeung, Eun-Tae;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.163-169
    • /
    • 1998
  • In this paper, we consider the problem of designing H$\infty$ state feedback controller for the generalized time systems with delayed states and control inputs in continuous and discrete time cases, respectively. The generalized time delay system problems are solved on the basis of LMI(linear matrix inequality) technique considering time delays. The sufficient condition for the existence of controller and H$\infty$ state feedback controller design methods are presented. Also, using some changes of variables and Schur complements, the obtained sufficient condition can be rewritten as a LMI form in terms of transformed variables. The propose controller design method can be extended into the problem of robust H$\infty$ state feedback controller design method easily.

  • PDF

Robust QFT(Quantitative Feedback Theory) Controller Design of Parallel Link (평행링크 매니퓰레이터의 강인한 QFT(Quantitative Feedback Theory)제어기 설계)

  • Kang, Min-Goo;Byun, Gi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2249-2251
    • /
    • 2001
  • This paper proposes that it minimizes interference between link at high speed trajectory tracking of 2-degree parallel link manipulator and QFT(Quantitative Feedback Theory) controller which robust structure uncertainty and disturbance of plant. And using ICD(Individual Channel Design), it separates two channel from multivariable system, parallel link manipulator and designs robust controller with applying MISO QFT to each channel. Finally, we make sure of robustness and excellence of QFT controller through simulation and experiment.

  • PDF

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

Control System Design for the Focus Servo System of DVD Drive (DVD 드라이브의 포커스 서보 시스템 제어기 설계)

  • 한기봉;이시복
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2001
  • In this paper, two plant models, of which one is newly developed and the other one is the conventional one, of the focus servo system of DVD drive are presented and a two-degree-of freedom controller consisted of Inverse dynamics feedforward and LQG/LTR feedback controller is designed. The newly developed plant model is used to design the feedforward controller and the conventional model is used for the design of feedback controller. The output of newly developed model is the displacement of objective lens and the output of conventional model is the focus error of the DVD focus servo system. The displacement of the objective lens is estimated by the dynamics model of the DVD focus servo system. The disturbance rejection performance of the two-degree-of freedom controller is compared with that of an LQG/LTR one.

  • PDF

Nonlinear Controller and Observer Design for Ball and Beam (볼빔에 대한 비선형 제어기 및 관측기 설계)

  • 임규만
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF

Robust Non-Fragile $H_{\infty}$ Output Feedback Control for Descriptor Systems with Parameter Uncertainties (변수 불확실성을 가지는 특이시스템의 강인 비약성 $H_{\infty}$ 출력궤환 제어)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.389-395
    • /
    • 2007
  • In this paper, we consider the robust non-fragile $H_{\infty}$ output feedback controller design method for uncertain descriptor systems with feedback and observer gain variations. The existence condition of observer-based robust and non-fragile $H_{\infty}$ output feedback controller and the controller design method are Presented on the basis of linear matrix inequality approach. The proposed robust non-fragile $H_{\infty}$ output feedback controller guarantees asymptotic stability, non-fragility, $H_{\infty}$ norm bound within a prescribed level in spite of disturbance, parameter uncertainty, and feedback/observer gain variations.

Design of an Augmented State Feedback Controller for a Wheeled Inverted Pendulum Returning to the Origin (원점 복귀 가능한 차륜형 역진자 제어를 위한 확장 상태피드백 제어기 설계)

  • Lee, Se-Han
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2011
  • An augmented state feedback controller for a Wheeled Inverted Pendulum (WIP) is proposed in this research. The augmented state feedback controller is able to keep the WIP returning to the origin. Generally, the WIP has both stable and unstable equilibrium points. To keep the WIP over the unstable equilibrium point, the WIP consistently is being controlled. A simple state feedback controller is letting the WIP out of the origin when the center of gravity of the WIP locates out of the schematic center line. In some case of applications, it may not be desirable that the WIP is drifting out of the initial location. The proposed augmented state feedback controller is able to keep the WIP at the initial location whether its center of gravity lies out of the center line or not. Numerical simulations are carried out to show the validation of the augmented sated feedback controller.