• Title/Summary/Keyword: design objective

Search Result 6,792, Processing Time 0.037 seconds

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

A Study on the Improvement of RAM Objective Considering Method for Weapon System (무기체계 RAM 목표값 설정 관련 개선방안 고찰)

  • Hwang, Kyeong Hwan;Hur, Jangwook
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.150-158
    • /
    • 2017
  • Purpose: The RAM objective is a very important factor that has a great effect on the improvement of the operation ration during the operation maintenance and the reduction of the life cycle cost. It is used as a design criterion during the system development, and its sufficiency should be evaluated during its test evaluation. Method: This study analyzed the cases related to RAM objective setting and suggested the improvement measures. Result: The base data for RAM objective is OMS/MP, which needs to be drawn up under the supervision of the requirement military, and a high-accuracy operating availability should be set through ALDT calculation which reflects the military logistics support environment. In addition, data collection necessary for RAM objective and RAM analysis should be made by supplementing the input data of DELIIS. Conclusion: This study suggests improvement of RAM objective considering for the weapon system.

Optical Design of a High-numerical-aperture Objective with a Reflective Focal Reducer (반사형 Focal Reducer를 가지는 높은 개구수의 대물렌즈 설계)

  • Jong Ung Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.248-260
    • /
    • 2023
  • A 0.5-numerical-aperture (NA) refractive-reflective objective, composed of a low-NA refractive and a reflective focal reducer, is designed. A 0.25-NA Lister objective is used for the refractive. A two-spherical-mirror system, corrected for spherical aberration, coma, and astigmatism is used for the reflective focal reducer. In spite of high NA, the refractive-reflective objective has an 18-mm working distance and improved imaging performance, compared to the 0.25-NA Lister objective.

Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure (2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계)

  • Park, Jung-Hyen;Kim, Soon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

Optimization for the Design Parameters of Electric Locomotive Overhaul Maintenance Facility (전기 기관차 중수선 시설의 설계 변수 최적화)

  • Um, In-Sup;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2010
  • In this paper, we propose a optimization approach for the Electric Locomotive Overhaul Maintenance Facility (ELOMF), which aims at the simulation optimization so as to meet the design specification. In simulation design, we consider the critical path and sensitivity analysis of the critical (dependent) factors and the design (independent) parameters for the parameter selection and reduction of the metamodel. Therefore, we construct the multi-objective non-linear programming. The objective function is normalized for the generalization of design parameter while the constraints are composed of the simulation-based regression metamodel for the critical factors and design factor's domain. Then the effective solution procedure based on the pareto optimal solution set is proposed. This approach provides a comprehensive approach for the optimization of Train Overhaul Maintenance Facility(TOMF)'s design parameters using the simulation and metamoels.

Shape Optimization of a Trapezoidal Micro-Channel (사다리꼴 미세유로의 형상최적화)

  • Husain, Afzal;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2666-2671
    • /
    • 2007
  • This work presents microchannel heat sink shape optimization procedure using Kriging method. Design variables relating to microchannel width, depth and fin width are selected, and thermal resistance has been taken as objective function. Design points are selected through a three-level fractional factorial design of sampling method. Navier-Stokes and energy equations for laminar flow and conjugate heat transfer are solved at these design points using a finite volume solver. Solutions are carefully validated with experimental results. Using the numerically evaluated objective function, a surrogate model (Kriging) is constructed and optimum point is searched by sequential quadratic programming. The process of shape optimization greatly improves the thermal performance of microchannel heat sink under constant pumping power.

  • PDF

A Robust Design Using Approximation Model and Probability of Success (근사모델 및 성공확률을 이용한 강건설계)

  • Song, Byoung-Cheol;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.3-11
    • /
    • 2008
  • Robust design pioneered by Dr. G. Taguchi has been applied to versatile engineering problems for improving quality. Since 1980s, the Taguchi method has been introduced to numerical optimization, complementing the deficiencies of deterministic optimization, which is often called the robust optimization. In this study, the robust optimization strategy is proposed by considering the robustness of objective and constraint functions. The statistics of responses in the functions are surrogated by kriging models. In addition, objective and/or constraint function is represented by the probability of success, thus facilitating robust optimization. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

  • PDF

Optimal Design of Compact Heat Exchanger (Louver Fin-tube Heat Exchanger for High Heat Transfer and Low Pressure Drop)

  • Kang, Hie-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.891-898
    • /
    • 2011
  • The present work was conducted to get the best geometric information for the optimum design of the complex heat exchanger. The objective function for optimal design was expressed as a combination of pressure drop and heat transfer rate. The geometric parameters for the variables of louver pitch and height, tube width, etc., were limited to ranges set by manufacturing conditions. The optimum geometric parameters were calculated by using empirical correlations and theory. The sensitivity of the parameters and optimum values are shown and discussed. The weighting factor in the objective function is important in the selection of the louver fin-tube heat exchanger.

Optimal Network Design with Hooke-and-Jeeves Algorithm (Hooke-and-Jeeves 기법에 의한 최적가로망설계)

  • 장현봉;박창호
    • Journal of Korean Society of Transportation
    • /
    • v.6 no.1
    • /
    • pp.5-16
    • /
    • 1988
  • Development is given to an optimal network design method using continuous design variables. Modified Hooke-and-Jeeves algorithm is implemented in order to solve nonlinear programming problem which is approximately equivalent to the real network design problem with system efficiency crieteria and improvement cost as objective function. the method was tested for various forms of initial solution, and dimensions of initial step size of link improvements. At each searching point of evaluating the objective function, a link flow problem was solved with user equilibrium principles using the Frank-Wolfe algorithm. The results obtained are quite promising interms fo numbers of evaluation, and the speed of convergence. Suggestions are given to selections of efficient initial solution, initial step size and convergence criteria. An approximate method is also suggested for reducing computation time.

  • PDF

An Optimum Design of Replication Process to Improve Birefringence, Radial-tilt and Land-Groove Structure in DVD-RAM Substrates (DVD-RAM 기판의 복굴절, Radial-tilt 및 전사성 향상을 위한 사출압축성형공정 최적화)

  • Lee, Nam-Seok;Sung, Ki-Byung;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.438-444
    • /
    • 2001
  • The objective of this study is to provide a simple methodology to find optimum processing conditions to fabricate sub-micron structured DVD-RAM substrates with superb optical and geometrical properties. It was found that the birefringence, which is regarded as one of the most important optical properties for an optical disk, was very sensitive to the mold wall temperature history. Also, the integrity of the replication, represented by the land-groove structure and the radial tilt were influenced by the mold temperature and the compression pressure. A set of optimum conditions were obtained by applying Design of Experiment and the objective functions composed of three different objectives.

  • PDF