• Title/Summary/Keyword: design formulas

Search Result 525, Processing Time 0.025 seconds

Parametric modeling and shape optimization design of five extended cylindrical reticulated shells

  • Wu, J.;Lu, X.Y.;Li, S.C.;Xu, Z.H.;Wang, Z.D.;Li, L.P.;Xue, Y.G.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.217-247
    • /
    • 2016
  • Five extended cylindrical reticulated shells are proposed by changing distribution rule of diagonal rods based on three fundamental types. Modeling programs for fundamental types and extended types of cylindrical reticulated shell are compiled by using the ANSYS Parametric Design Language (APDL). On this basis, conditional formulas are derived when the grid shape of cylindrical reticulated shells is equilateral triangle. Internal force analysis of cylindrical reticulated shells is carried out. The variation and distribution regularities of maximum displacement and stress are studied. A shape optimization program is proposed by adopting the sequence two-stage algorithm (RDQA) in FORTRAN environment based on the characteristics of cylindrical reticulated shells and the ideas of discrete variable optimization design. Shape optimization is achieved by considering the objective function of the minimum total steel consumption, global and locality constraints. The shape optimization for three fundamental types and five extended types is calculated with the span of 30 m~80 m and rise-span ratio of 1/7~1/3. The variations of the total steel consumption along with the span and rise-span ratio are analyzed with contrast to the results of shape optimization. The optimal combination of main design parameters for five extended cylindrical reticulated shells is investigated. The total steel consumption affected by distribution rule of diagonal rods is discussed. The results show that: (1) Parametric modeling method is simple, efficient and practical, which can quickly generate different types of cylindrical reticulated shells. (2) The mechanical properties of five extended cylindrical reticulated shells are better than their fundamental types. (3) The total steel consumption of cylindrical reticulated shells is optimized to be the least when rise-span ratio is 1/6. (4) The extended type of three-way grid cylindrical reticulated shell should be preferentially adopted in practical engineering. (5) The grid shape of reticulated shells should be designed to equilateral triangle as much as possible because of its reasonable stress and the lowest total steel consumption.

Development of finite element analysis program and simplified formulas of bellows and shape optimization (벨로우즈에 대한 유한요소해석 프로그램 및 간편식의 개발과 형상최적설계)

  • Koh, Byung-Kab;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1195-1208
    • /
    • 1997
  • Bellows is a component in piping systems which absorbs mechanical deformation with flexibility. Its geometry is an axial symmetric shell which consists of two toroidal shells and one annular plate or conical shell. In order to analyze bellows, this study presents the finite element analysis using a conical frustum shell element. A finite element analysis is developed to analyze various bellows. The validity of the developed program is verified by the experimental results for axial and lateral stiffness. The formula for calculating the natural frequency of bellows is made by the simple beam theory. The formula for fatigue life is also derived by experiments. The shape optimal design problem is formulated using multiple objective optimization. The multiple objective functions are transformed to a scalar function by weighting factors. The stiffness, strength and specified stiffness are considered as the multiple objective function. The formulation has inequality constraints imposed on the fatigue limit, the natural frequencies, and the manufacturing conditions. Geometric parameters of bellows are the design variables. The recursive quadratic programming algorithm is selected to solve the problem. The results are compared to existing bellows, and the characteristics of bellows is investigated through optimal design process. The optimized shape of bellows is expected to give quite a good guideline to practical design.

Prediction of Reliability of Fatigue Limit of S34MnV Steel for Marine Diesel Engine Crank Throw Components (선박용 디젤 엔진 크랭크 스로 부품용 S34MnV강의 피로한도에 대한 신뢰도 예측)

  • Kim, Seon Jin;Kong, Yu Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2016
  • The aim of this study is to estimate the reliability of fatigue limit of the material used for crank throw components according to the staircase method. The material used for crank throw components is forged S34MnV grade steel, which is heat treated by normalizing and tempering. In this work, to predict the reliability of the design fatigue strength, axially loaded constant amplitude fatigue testing was conducted. The test specimens were loaded with an axial push/pull load with a mean stress of 0 MPa, which corresponds to a stress ratio of R=-1. The fatigue test results were evaluated by Dixon-Mood formulas. The values of mean fatigue strength and standard deviation predicted by the staircase method were 296.3 MPa and 10.6 MPa, respectively. Finally, the reliability of the fatigue limit in some selected probability of failure is predicted. The proposed method can be applied for the determination of fatigue strength for design optimization of the forged steel.

Shape Design Sensitivity Analysis of Axisymmetric Thermal Conducting Solids Using Boundary Integral Equations (경계적분방정식을 이용한 축대칭 열전도 고체의 형상설계민감도 해석)

  • 이부윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.141-152
    • /
    • 1993
  • A generalized method is presented for shape design sensitivity analysis of axisymmetric thermal conducting solids. The shape sensitivity formula of a general performance functional arising in shape optimal design problem is derived using the material derivative concept and the adjoint variable method. The method for deriving the formula is based on standard axisymmetric boundary integral equation formulation. It is then applied to obtain the sensitivity formulas for temperature and heat flux constraints imposed over a small segment of the boundary. To show the accuracy of the sensitivity analysis, numerical implementations are done for three examples. Sensitivities calculated by the presented method are compared with analytic sensitivities for two examples with analytic solutions, and compared with sensitivies by finite difference for a cooling fin example.

A New Closed-form Transfer Fuction for the Design of Wideband Lowpass MAXFLAT FIR filters with Zero Phase (제로 위상을 갖는 광대역 저역통과 MAXFLAT FIR 필터 설계를 위한 새로운 폐쇄형 전달 함수)

  • Jeon, Joon-Hyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.658-666
    • /
    • 2007
  • In general, the earlier linear-phase MAXFLAT(maximally flat) lowpass FIR filters have the main disadvantage of a gain response in the half frequency band $(0{\leq}w{\leq}{\pi}/2)$ by the closed form transfer functions used in design techniques for realizing them. Moreover, most of them has existent problems as follows : ripple error in the stopband, gentle-cutoff attenuation, phase and group delay and inexact cutoff frequency response. It is due to the approximation algorithms such as Chebyshev norm and Remez exchange which are used to approach MAXFLAT and linear-phase characteristics in frequency domain. In this paper, a new mathematically closed-form transfer function is introduced for the design of MAXFLAT lowpass FIR filters which have the zero-phase and wideband-gain response. In addition, we verify that the closed-form transfer function is easily realized due to our generalized formulas derived newly by using MAXFLAT conditions including an arbitrary cutoff point. This method is, therefore, useful for "simple and quick designs". Conclusively, we propose a technique for the design of new zero-phase wideband MAXFLAT lowpass FIR filters which can achieve sharp-cutoff attenuation exceeding 250 dB almost everywhere.

High-strength concrete deep beams with web openings strengthened by carbon fiber reinforced plastics

  • Lu, Wen-Yao;Yu, Hsin-Wan;Chen, Chun-Liang;Liu, Shen-Lung;Chen, Ting-Chou
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2015
  • The objective of this study is to examine the effect of carbon fiber reinforced polymer (CFRP) on the shear strengths of deep beams with web openings. A total of 18 high-strength concrete deep beams with web openings were tested. Twelve were externally wrapped with four layers of CFRP, six of them strengthened in the horizontal direction and the others in the vertical direction. The parameters of the configuration of CFRP, the sizes of the openings and the locations of the openings were covered in this study. The test results indicates the shear strengths of deep beams with openings sized $60{\times}40mm$ were about 16% higher than that with openings sized $68{\times}68mm$. For deep beams with openings sized $60{\times}40mm$, the lower the locations of openings the higher the shear strengths were. The test results also indicate the shear strengths of deep beams with web openings strengthened by CFRP wrapped in the vertical direction can be enhanced by about 10%. However, the shear strengths of deep beams with web openings strengthened by CFRP wrapped in the horizontal direction can only be enhanced by about 6%. The shear strengths of deep beam, with different size and location of web openings and strengthened by different configuration of CFRP can be reasonably predicted by the empirical formulas of Kong and Sharp.

Shear strength prediction of concrete-encased steel beams based on compatible truss-arch model

  • Xue, Yicong;Shang, Chongxin;Yang, Yong;Yu, Yunlong;Wang, Zhanjie
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.785-796
    • /
    • 2022
  • Concrete-encased steel (CES) beam, in which structural steel is encased in a reinforced concrete (RC) section, is widely applied in high-rise buildings as transfer beams due to its high load-carrying capacity, great stiffness, and good durability. However, these CES beams are prone to shear failure because of the low shear span-to-depth ratio and the heavy load. Due to the high load-carrying capacity and the brittle failure process of the shear failure, the accurate strength prediction of CES beams significantly influences the assessment of structural safety. In current design codes, design formulas for predicting the shear strength of CES beams are based on the so-called "superposition method". This method indicates that the shear strength of CES beams can be obtained by superposing the shear strengths of the RC part and the steel shape. Nevertheless, in some cases, this method yields errors on the unsafe side because the shear strengths of these two parts cannot be achieved simultaneously. This paper clarifies the conditions at which the superposition method does not hold true, and the shear strength of CES beams is investigated using a compatible truss-arch model. Considering the deformation compatibility between the steel shape and the RC part, the method to obtain the shear strength of CES beams is proposed. Finally, the proposed model is compared with other calculation methods from codes AISC 360 (USA, North America), Eurocode 4 (Europe), YB 9082 (China, Asia), JGJ 138 (China, Asia), and AS/NZS 2327 (Australia/New Zealand, Oceania) using the available test data consisting of 45 CES beams. The results indicate that the proposed model can predict the shear strength of CES beams with sufficient accuracy and safety. Without considering the deformation compatibility, the calculation methods from the codes AISC 360, Eurocode 4, YB 9082, JGJ 138, and AS/NZS 2327 lead to excessively conservative or unsafe predictions.

Estimating design floods in ungauged watersheds through regressive adjustment of flood quantiles from the design rainfall - runoff analysis method (설계강우-유출 관계 분석법에 의한 확률홍수량의 회귀보정을 통한 미계측 유역의 설계홍수량 산정)

  • Chae, Byung-Seok;Lee, Jin-Young;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.627-635
    • /
    • 2017
  • It is required to estimate reliable design floods for hydraulic structures in order to respond more effectively to recent climate change. In this study, differences of design floods that were estimated the flood frequency analysis (FFA) and the design rainfall-runoff analysis (DRRA) were analyzed. In Korea, due to lack of measured flood data, the DRRA method is used in practice to determine the design floods. However, assuming the design floods estimated by the FFA as true values, the DRRA method over estimated the design floods by 79%. Thus, this study proposed a practical method to estimated design flood in ungauaged watersheds through regressive adjustment of flood quantiles estimated from the DRRA method. To this end, after investigating the differences between design floods acquired from the FFA and the DRRA method, nonlinear regression analyses were performed to develop the adjustment formulas for 8 large-dam watersheds. Applying the adjustment formula, the accuracy was improved by 65.0% on average over the DRRA method. In addition, when considering the watershed size, the adjustment formula increases the accuracy by 2.1%p on average over when not considering the watershed size.

Statistical Characteristics of Pier-Scour Equations for Scour Depth Calculation (교각세굴심 산정 공식의 통계적 특성)

  • Lee, Ho Jin;Chang, Hyung Joon;Heo, Tae Young
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • In recent years, the occurrence of localized torrential rain has increased due to the increase in heavy rainfall and massive typhoons caused by abnormal weather. As a result, the flow rate of small and medium-sized rivers in Korea is rapidly increasing, affecting the safety of bridges and increasing the risk of scour. However, the domestic bridge construction technology does not reflect the watershed characteristics of domestic rivers because the bridge scour depth calculation formula developed overseas is used to calculate the bridge scour depth. Therefore, this study is a basic study for prevention of bridge damage according to scouring phenomenon, and a comparative analysis was performed between the experimental data measured through hydraulic model test and the scour depth formulas applied in Korea. In addition, the statistical analysis between experimental data and scour depth formula shows that Coleman's (1971) formula estimates the best scour depth. The results of this study are expected to be used to calculate more accurate bridge scour depth in river design and bridge design.

Compressive Strength of Horizontal Joints in Precast Concrete Large Panel System (대형 콘크리트 패널구조 수평접합부의 지지력 성능에 관한 연구)

  • 서수연;정봉오;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.138-147
    • /
    • 1994
  • The compressive strength of horizontal joints in precast concrete large panel structures depends on parameters such as grout and panel strength, detail of joint, joint moment, width of grout column, and etc. 44 specimens were tested to investigate the effects of parameters that influence the compressive strength of horizontal joints. The design formula specified in Korean Cock for compression horizontal joints must be reviewed, because it was based on the test results of the joint types not used in Korea. In this study comparing the test results, there fore, the validity of the design formulas was evaluated and a suitable formula was proposed to predict the ultimate strengths of compression horizontal joints. The increase of ultimate strengths was not observed, even if confined the horizontal displacement of slabs and reinforced the wall edge, when the grout strength is lower than panel strength. From the comparison of test results and those by the proposed formula, it was shown that proposed formula was suitable to predict the ultimate compressive strength of horizontal joints.