DOI QR코드

DOI QR Code

Statistical Characteristics of Pier-Scour Equations for Scour Depth Calculation

교각세굴심 산정 공식의 통계적 특성

  • Lee, Ho Jin (School of Civil Engineering, Chungbuk National University) ;
  • Chang, Hyung Joon (School of Civil Engineering, Chungbuk National University) ;
  • Heo, Tae Young (School of Information and Statistics, Chungbuk National University)
  • Received : 2019.09.09
  • Accepted : 2019.09.24
  • Published : 2019.09.30

Abstract

In recent years, the occurrence of localized torrential rain has increased due to the increase in heavy rainfall and massive typhoons caused by abnormal weather. As a result, the flow rate of small and medium-sized rivers in Korea is rapidly increasing, affecting the safety of bridges and increasing the risk of scour. However, the domestic bridge construction technology does not reflect the watershed characteristics of domestic rivers because the bridge scour depth calculation formula developed overseas is used to calculate the bridge scour depth. Therefore, this study is a basic study for prevention of bridge damage according to scouring phenomenon, and a comparative analysis was performed between the experimental data measured through hydraulic model test and the scour depth formulas applied in Korea. In addition, the statistical analysis between experimental data and scour depth formula shows that Coleman's (1971) formula estimates the best scour depth. The results of this study are expected to be used to calculate more accurate bridge scour depth in river design and bridge design.

최근 이상기후로 인한 집중호우, 대규모 태풍 등의 증가로 국지성 집중호우의 발생빈도가 높아지고 있다. 이로 인하여 국내 중소규모 하천의 유량이 급격하게 증가함에 따라 교량의 안전성에 영향을 미치고 있으며, 세굴에 대한 위험성도 증가하고 있다. 그러나 국내 교량건설기술에서는 교각 세굴심을 산정하기 위하여 해외의 교각 세굴심 산정식을 활용하고 있어 국내 하천의 유역특성을 반영하지 못하고 있는 실정이다. 따라서 본 연구는 세굴현상에 따른 교량피해를 예방하기 위한 기초연구로써, 수리모형실험을 통해 측정된 실험자료와 국내에 적용되고 있는 세굴 산정식들간의 비교 분석을 수행하였다. 또한 실험자료와 세굴 산정식의 통계분석을 통하여 Coleman(1971) 공식이 가장 우수하게 세굴심을 산정하고 있는 것을 확인하였다. 본 연구의 결과는 향후 하천설계 및 교량설계에 있어 보다 정확한 교각 세굴심을 산정하는데 활용 될 수 있을 것으로 기대된다.

Keywords

References

  1. Chnha, L. V. (1975). Time Evolution of Local Scour. The 16th IAHR Congress Proceedings, Sao Paulo.
  2. Choi, S. and Cheong, S. (2006). Prediction of Local Scour Around Bridge Piers Using Artificial Neural Networks. Journal of the AWRA. 42(2): 487-494.
  3. Dey, S., Bose, S. K., and Sastry, G. I. N. (1995). Clearwater Scour at Circular Piers-A Model. Journal of Hydraulic Engineering. ASCE. 121: 869-876. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:12(869)
  4. Johnson, P. (1992), Reliability-based Pier Scour Engineering, Journal of Hydraulic Engineering. ASCE. 118: 1344-1354. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:10(1344)
  5. Laursen, E. M. (1963). An Analysis of Relief Bridge Scour. Journal of the Hydraulics Division. 89(3): 93-118. https://doi.org/10.1061/JYCEAJ.0000896
  6. Lai, J., Chang, W., and Yen, C. (2009), Maximum Local Scour Depth at Bridge Piers under Unsteady Flow. Journal of Hydraulic Engineering. ASCE. 135: 609-614. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000044
  7. Lee, S. S. (2001). Effect of Local Scour Depth Reduction Around Multiple Bridge Pier Using Circular Collar. M. S. Dissertation. Hongik University.
  8. Lim, J. H. (2002). The Experimental Study of Scour Depths due to Piers at Small Streams in Mountainous Areas. M. S. Dissertation. Dankook University.
  9. Melville, B. and Chiew, Y. (1999). Time Scale for Local Scour at Bridge Piers. Journal of Hydraulic Engineering. ASCE. 125: 59-65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)
  10. Mia, M. and Nago, H. (2003). Design Method of Time Dependent Local Scour at Circular Bridge Pier. Journal of Hydraulic Engineering. ASCE. 129: 420-427. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(420)
  11. Min, B. Y., Chang, H. J., Lee, H. J., and Kim, S. D. (2019). Review on Applicability of Local Scour Depth Calculation Formula in River. Korean Society of Disaster &Security. 12(1): 1-9.
  12. Park, C. W. and Park, H. I. (2017). Evaluation of the Applicability of Pier Local Scour Formulae Using Laboratory and Field Data. Marine Georesources and Geotechnology. 35: 1-7. https://doi.org/10.1080/1064119X.2014.954658
  13. Park, J. W. (2012). Application Evaluation of Equation by the Scour Depth Estimation in Bight River. M. S. Dissertation. Kangwon University.
  14. Sheppard, D. M., Odeh, M., and Glasser, T. (2004). Large Scale Clear-water Local Pier Scour Experiment. Journal of Hydraulics Engineering. ASCE. 130: 957-963. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:10(957)
  15. Sheppard, D. M. and Miller, W. (2006). Live-bed Local Scour Pier Experiment, Journal of Hydraulic Engineering. ASCE. 132: 635-642. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:7(635)
  16. You, J. S. (1997). In-Situ Measurement and Applicability of Bridge Scouring Depths. M. S. Dissertation. Myongji University.