• Title/Summary/Keyword: design forces

Search Result 2,246, Processing Time 0.033 seconds

RESEARCH ON LOAD-BEARING PROPERTY AND DESIGN OF CABLE DOMES

  • Shen Cao;Zi Zhu
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.596-605
    • /
    • 2005
  • The cable dome, proposed by Geiger after developing Fuller's idea of tensegrity and improved by Levy, is a new type of large span space structures. In this paper, formulations of the initial forces distribution in members of two main systems of cable dome, which are Geiger dome and Levy dome, are presented. By analyzing the static performance of Levy dome and the variation of internal forces in members of the structure, four groups of design parameters in cable dome structure are represented in terms of: (1) the numbers of rings and the spaces between the rings; (2) the slopes of ridge cables; (3) the lengths of struts; (4) the initial force in one member of the structure.

  • PDF

Effect of Friction on the Hysteresis of the Thrust Forces Acting on Auto Leveling Devices in Vehicle Head Lamps (헤드 램프 빛의 각도 자동 조절 장치에 작용하는 추력의 히스테리시스에 대한 마찰의 영향)

  • Baek, Hong;Kim, Jae-Hoon;Nam, Jin-Sik;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.369-375
    • /
    • 2019
  • This paper presents a new method on how to calculate the thrust forces acting on an auto-leveling device in headlamps for passenger vehicles. The leveling device is used to lower the angle of lights when a load in the trunk of the vehicle lifts it. In the process of the headlamp design, it is imperative to predict the external forces so that the designers can decide whether to proceed or not. The device is composed of three pivot joints with no reaction moment, a plate that holds the lamp, and a leveling motor that changes rotation to linear motion. In this study, force balance, moment balance, and geometric compatibility are applied to the leveling device system so that a nonlinear system of equations can be derived; the multi-dimensional Newton-Raphson algorithm is then used to solve these. A sensitivity analysis is carried out to verify which design variables affect the system the most: the mass of the lamp and the height between the pivot and leveling device affect the thrust forces the most. Then, considering the friction forces between the moving parts, the hysteresis of the forces are derived. An experimental apparatus, designed and developed in this study, is used to verify the exactness of the derived equations. The results from experiments coincide well with the calculated results. The friction hysteresis, in particular, proves this upon analysis.

A scientific approach to estimate the safe depth of burial of submarine pipelines against wave forces for different marine soil conditions

  • Neelamani, S.;Al-Banaa, K.
    • Ocean Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.9-34
    • /
    • 2013
  • Submarine pipelines encounter significant wave forces in shallow coastal waters due to the action of waves. In order to reduce such forces (also to protect the pipe against anchors and dropped objects) they are buried below the seabed. The wave force variation due to burial depends on the engineering characteristics of the sub soil like hydraulic conductivity and porosity, apart from the design environmental conditions. For a given wave condition, in certain type of soil, the wave force can reduce drastically with increased burial and in certain other type of soil, it may not. It is hence essential to understand how the wave forces vary in soils of different hydraulic conductivity. Based on physical model study, the wave forces on the buried pipeline model is assessed for a wide range of wave conditions, for different burial depths and for four types of cohesion-less soils, covering hydraulic conductivity in the range of 0.286 to 1.84 mm/s. It is found that for all the four soil types, the horizontal wave force reduces with increase in depth of burial, whereas the vertical force is high for half buried condition. Among the soils, well graded one is better for half buried case, since the least vertical force is experienced for this situation. It is found that uniformly graded and low hydraulic conductivity soil attracts the maximum vertical force for half buried case. A case study analysis is carried out and is reported. The results of this study are useful for submarine buried pipeline design.

Measurement of Cutting Force in Diamond Turning Process (다이아몬드 터닝의 절삭력 측정용 tool holder를 이용한 미세절삭력 특성 연구)

  • 정상화;김상석;도철진;홍권희;김건희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.938-941
    • /
    • 2001
  • A tool holder system has been designed and builted to measure cutting forces in diamond turning. This system design includes a 3-component piezo-electric tranducer. Initial experiments with tool holder system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. In this research, tool holder system is modeled by considering the element dividing, material properties, and boundary conditions using MSC/PATRAN. Mode and frequency analysis of structure is simulated by MSC/NASTRAN, for the purpose of developing the effective design. In addition, tool holder system is verified by vibration test using accelerometer. Many cutting experiments have been conducted on 6061-T6 aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool force. Cutting velocity has been determined to have negligible effects between 4 and 21㎧.(6) Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a sample model may not be sufficient to describe the forces produced in the diamond turning process.

  • PDF

Analysis of Limitation and Improvement of Degree of Freedom for Brush Tire Model (브러쉬 타이어 모델의 한계점 분석 및 자유도 개선)

  • Kim, Jong-Min;Jung, Samuel;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.585-590
    • /
    • 2017
  • Vehicle behavior is determined by forces and a torques generated at the ground contact surface of the tire. Various tire models are used to calculate the forces and torques acting on the tire. The brush model calculates the forces and torques with fewer coefficients than other tire models. However, owing to fewer degrees of freedom in calculating the forces, this model has limitations in precisely expressing measured data. In this study, this problem was addressed by adding the least parameters to the friction coefficient and tire properties of the brush model, and the proposed model was validated.

Structural Optimization of the Pelvis in a Humanoid Considering Dynamic Characteristics (동적 특성을 고려한 휴머노이드 펠비스의 구조최적설계)

  • Hong, Eul-Pyo;You, Bum-Jae;Kim, Chang-Hwan;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1344-1349
    • /
    • 2007
  • Biped humanoids maintain their stability through precise controls during locomotion or operation. Dynamic forces are applied to the humanoid structure during locomotion or operation. If the humanoid has weakness from a structural viewpoint, these forces cause severe deformation or vibration of the structure, which can make the humanoid unstable. In this research, a design scenario is proposed to design a robust humanoid structure under the dynamic loads. The pelvis part is selected for design practice. Multibody dynamics is adopted to calculate the dynamic loads and a structural optimization technique is employed to design the pelvis structures. Since it is extremely difficult directly consider the dynamic loads in the optimization process, equivalent static loads are evaluated from the dynamic loads and the design result are discussed.

  • PDF

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF

Design and Analysis of Reinforced Concrete Hyperbolic Cooling (철근콘크리트 쌍곡냉각탑의 설계 및 해석)

  • 장현옥;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.501-506
    • /
    • 2000
  • An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i.e., for each sampling point, from the equilibrium between applied and internal forces. Based on nonlinear analyses performed in a hyperbolic cooling tower, the analytically calculated ultimate load exceeded the design ultimate load from 50% to 55% for an analysis with relatively low to high tension stiffening, cases $\gamma$=10 and 15. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem, This shows the adequacy of th current practice at least for this cooling tower shell case studied. To generalize the conclusion more designs - analyses should be reformed with different shell configurations.

  • PDF

The Modeling of Plants Form and Its Experimental Application to the Space Design (식물 형태의 조형화와 조경 공간 디자인에의 실험적 적용)

  • Kim, Soo-Yeon
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.05a
    • /
    • pp.247-248
    • /
    • 2005
  • Human beings are perhaps most outstanding in longing for the beauty in order. The natural form have a power to be self-respect and also a repetitious pattern. Such natural forms will be the source of design, its constituent principles. Such natural forms will be the source of design, its constituent principle is that the minimum energy system constitutes the maximum and various systems, its forms come int being during the harmony of forces, and various systems, its forms come into being during the harmony of forces, and it has a light structure to surmount any influence resulting from the increasement of its size. Therefore, in organizing space, such order of natural forms will provide space with vitality and can express the relation of freedom as order.

  • PDF