• Title/Summary/Keyword: design and construction approach

Search Result 773, Processing Time 0.028 seconds

연성도를 고려한 철근콘크리트 교각의 내진설계방법에 관한 연구 (Seismic Design Methodology of RC Bridge Columns based on Ductility)

  • 이재훈;손혁수;김준범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.135-140
    • /
    • 2002
  • Bridge columns in strong earthquake area are to be designed and constructed so that enough ductility should be guaranteed. Therefore, large amount of transverse reinforcement is required to confine core concrete of the bridge column by design specifications. In moderate seismicity regions, however, adopting the full ductility design concept sometimes results in construction problems due to reinforcement congestion. For the moderate seismicity regions, a design based on required ductility and required transverse reinforcement might be a reasonable approach. Ductility demand design or performance-based design might be an appropriate approach especially for regions of moderate seismic risk. The procedure and application of this design approach are presented in this paper.

  • PDF

매크로 파라메트릭 방법론은 이용한 CAD 모델의 교환 (Exchange of CAD Models Using Macro Parametric Approach)

  • 문두환;한순흥
    • 한국CDE학회논문집
    • /
    • 제6권4호
    • /
    • pp.254-262
    • /
    • 2001
  • It is not possible to exchange parametric information of CAD (Computer Aided Design) models based on the current version of STEP (Standard leer the Exchange of Product model data). The design intent can be lost during the STEP transfer of CAD models. The ISO Parametrics Group has proposed the SMCH (Solid Model Construction History) schema in June 2000 that includes structures fur exchange of parametric information. This paper proposes the macro parametric approach that is intended to provide capabilities to transfer parametric information. In this approach, CAD models are exchanged in the form of macro files. The macro file contains user commands which are used in the modeling phase. To exchange CAD models using the macro parametric approach, modeling commands of commercial CAD systems are analyzed. Those commands are classified by the grouping method suggested by Bill Anderson. As a neutral file format, a standard modeling commands set has been defined. Mapping relations between the standard modeling commands set and the native modeling commands set of commercial CAD systems are defined.

  • PDF

Research of fast point cloud registration method in construction error analysis of hull blocks

  • Wang, Ji;Huo, Shilin;Liu, Yujun;Li, Rui;Liu, Zhongchi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.605-616
    • /
    • 2020
  • The construction quality control of hull blocks is of great significance for shipbuilding. The total station device is predominantly employed in traditional applications, but suffers from long measurement time, high labor intensity and scarcity of data points. In this paper, the Terrestrial Laser Scanning (TLS) device is utilized to obtain an efficient and accurate comprehensive construction information of hull blocks. To address the registration problem which is the most important issue in comparing the measurement point cloud and the design model, an automatic registration approach is presented. Furthermore, to compare the data acquired by TLS device and sparse point sets obtained by total station device, a method for key point extraction is introduced. Experimental results indicate that the proposed approach is fast and accurate, and that applying TLS to control the construction quality of hull blocks is reliable and feasible.

건설업에서의 시공FMEA적용 방안 연구 (Approach to Method of Process Failure Mode and Effect Analysis for Construction Industry)

  • 김윤성
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2002년도 학술대회지
    • /
    • pp.271-274
    • /
    • 2002
  • 산업체에서 이미 보편화되어 온 FMEA기법의 목적은 발생가능성이 있는 하자형태를 파악하고, 고객에게 미칠 고장 발생 요인을 우선 순위별로 사전에 제거하도록 이행하는 예방조치의 한 수단이다. FMEA는 초기 단계(Design 개념 설정시)에서 작성하는 Design FMEA와 양산되기 전에 시기 적절하게 작성하는 Process FMEA의 두 종류가 있다. (설계기능이 없는 공급자에게는 Process FMEA만 해당) 본 연구에서는 Process FMEA를 건설업의 시공분야에 적용하여 품질향상의 신뢰성을 높이고 Life Cycle Analysis, Risk Analysis 등의 기초자료로 활용이 가능한 기본자료(DATA)를 축적할 수 있는 방안을 연구하였다.

  • PDF

다층분석법을 이용한 대규모 파라미터 설계 최적화 (Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems)

  • 김영진
    • 경영과학
    • /
    • 제24권2호
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.

An approach for calculating the failure loads of unprotected concrete filled steel columns exposed to fire

  • Wang, Y.C.;Kodur, V.K.R.
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.127-145
    • /
    • 1999
  • This paper deals with the development of an approach for evaluating the squash load and rigidity of unprotected concrete filled steel columns at elevated temperatures. The current approach of evaluating these properties is reviewed. It is shown that with a non-uniform temperature distribution, over the composite cross-section, the calculations for the squash load and rigidity are tedious in the current method. A simplified approach is proposed to evaluate the temperature distribution, squash load, and rigidity of composite columns. This approach is based on the model in Eurocode 4 and can conveniently be used to calculate the resistance to axial compression of a concrete filled steel column for any fire resistance time. The accuracy of the proposed approach is assessed by comparing the predicted strengths against the results of fire tests on concrete filled circular and square steel columns. The applicability of the proposed approach to a design situation is illustrated through a numerical example.

시스템엔지니어링을 이용한 턴키방식 플랜트 건설계약의 기술적 위험요인 효과적 분석 및 관리 (An Effective Analysis and Management of Technical Risk to Turn-key based Plant Construction Contracts using Systems Engineering)

  • 홍대근;변희철;서석환
    • 시스템엔지니어링학술지
    • /
    • 제10권2호
    • /
    • pp.59-69
    • /
    • 2014
  • In the bidding stage of turn-key based plant construction contracts, owners provide design and performance basis for contractors instead of giving design drawing. To win the bid for a plant construction, the contractors should be obliged to satisfy and ensure owners'requirements such as design and performance basis in a plant construction project, In other words, owners imposes technical risk of the design to the contractors by specifying responsibility for the analysis and verification of the plant construction. Thus, it is very important that contracters make accurate and realistic basic design plan in a short period of time. To deal with such a situation, we propose a systems engineering approach for the analysis and management of the technical risk. Specifically, we first: 1) Analyzes technical risk related with the plant design information for the bidders, followed by 2) Developing stakeholder requirements for the basic engineering design, and 3) System requirements for dealing with technical risk. Also, in this paper, we proposed converting method from MOE(Measure of Effectiveness) to MOP(Measure of Performance) in the risk analysis. To show the effectiveness of the proposed method, we carried out a case study.

AUTOMATED HAZARD IDENTIFICATION FRAMEWORK FOR THE PROACTIVE CONSIDERATION OF CONSTRUCTION SAFETY

  • JunHyuk Kwon;Byungil Kim;SangHyun Lee;Hyoungkwan Kim
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.60-65
    • /
    • 2013
  • Introducing the concept of construction safety in the design/engineering phase can improve the efficiency and effectiveness of safety management on construction sites. In this sense, further improvements for safety can be made in the design/engineering phase through the development of (1) an automated hazard identification process that is little dependent on user knowledge, (2) an automated construction schedule generation to accommodate varying hazard information over time, and (3) a visual representation of the results that is easy to understand. In this paper, we formulate an automated hazard identification framework for construction safety by extracting hazard information from related regulations to eliminate human interventions, and by utilizing a visualization technique in order to enhance users' understanding on hazard information. First, the hazard information is automatically extracted from textual safety and health regulations (i.e., Occupational Safety Health Administration (OSHA) Standards) by using natural language processing (NLP) techniques without users' interpretations. Next, scheduling and sequencing of the construction activities are automatically generated with regard to the 3D building model. Then, the extracted hazard information is integrated into the geometry data of construction elements in the industry foundation class (IFC) building model using a conformity-checking algorithm within the open source 3D computer graphics software. Preliminary results demonstrate that this approach is advantageous in that it can be used in the design/engineering phases of construction without the manual interpretation of safety experts, facilitating the designers' and engineers' proactive consideration for improving safety management.

  • PDF

Prediction on load carrying capacities of multi-storey door-type modular steel scaffolds

  • Yu, W.K.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • 제4권6호
    • /
    • pp.471-487
    • /
    • 2004
  • Modular steel scaffolds are commonly used as supporting scaffolds in building construction, and traditionally, the load carrying capacities of these scaffolds are obtained from limited full-scale tests with little rational design. Structural failure of these scaffolds occurs from time to time due to inadequate design, poor installation and over-loads on sites. In general, multi-storey modular steel scaffolds are very slender structures which exhibit significant non-linear behaviour. Hence, secondary moments due to both $P-{\delta}$ and $P-{\Delta}$ effects should be properly accounted for in the non-linear analyses. Moreover, while the structural behaviour of these scaffolds is known to be very sensitive to the types and the magnitudes of restraints provided from attached members and supports, yet it is always difficult to quantify these restraints in either test or practical conditions. The problem is further complicated due to the presence of initial geometrical imperfections in the scaffolds, including both member out-of-straightness and storey out-of-plumbness, and hence, initial geometrical imperfections should be carefully incorporated. This paper presents an extensive numerical study on three different approaches in analyzing and designing multi-storey modular steel scaffolds, namely, a) Eigenmode Imperfection Approach, b) Notional Load Approach, and c) Critical Load Approach. It should be noted that the three approaches adopt different ways to allow for the non-linear behaviour of the scaffolds in the presence of initial geometrical imperfections. Moreover, their suitability and accuracy in predicting the structural behaviour of modular steel scaffolds are discussed and compared thoroughly. The study aims to develop a simplified and yet reliable design approach for safe prediction on the load carrying capacities of multi-storey modular steel scaffolds, so that engineers can ensure safe and effective use of these scaffolds in building construction.

A Worker-Driven Approach for Opening Detection by Integrating Computer Vision and Built-in Inertia Sensors on Embedded Devices

  • Anjum, Sharjeel;Sibtain, Muhammad;Khalid, Rabia;Khan, Muhammad;Lee, Doyeop;Park, Chansik
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.353-360
    • /
    • 2022
  • Due to the dense and complicated working environment, the construction industry is susceptible to many accidents. Worker's fall is a severe problem at the construction site, including falling into holes or openings because of the inadequate coverings as per the safety rules. During the construction or demolition of a building, openings and holes are formed in the floors and roofs. Many workers neglect to cover openings for ease of work while being aware of the risks of holes, openings, and gaps at heights. However, there are safety rules for worker safety; the holes and openings must be covered to prevent falls. The safety inspector typically examines it by visiting the construction site, which is time-consuming and requires safety manager efforts. Therefore, this study presented a worker-driven approach (the worker is involved in the reporting process) to facilitate safety managers by developing integrated computer vision and inertia sensors-based mobile applications to identify openings. The TensorFlow framework is used to design Convolutional Neural Network (CNN); the designed CNN is trained on a custom dataset for binary class openings and covered and deployed on an android smartphone. When an application captures an image, the device also extracts the accelerometer values to determine the inclination in parallel with the classification task of the device to predict the final output as floor (openings/ covered), wall (openings/covered), and roof (openings / covered). The proposed worker-driven approach will be extended with other case scenarios at the construction site.

  • PDF