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Abstract: Due to the dense and complicated working environment, the construction industry is 

susceptible to many accidents. Worker’s fall is a severe problem at the construction site, including 

falling into holes or openings because of the inadequate coverings as per the safety rules. During 

the construction or demolition of a building, openings and holes are formed in the floors and roofs. 

Many workers neglect to cover openings for ease of work while being aware of the risks of holes, 

openings, and gaps at heights. However, there are safety rules for worker safety; the holes and 

openings must be covered to prevent falls. The safety inspector typically examines it by visiting 

the construction site, which is time-consuming and requires safety manager efforts. Therefore, this 

study presented a worker-driven approach (the worker is involved in the reporting process) to 

facilitate safety managers by developing integrated computer vision and inertia sensors-based 

mobile applications to identify openings. The TensorFlow framework is used to design 

Convolutional Neural Network (CNN); the designed CNN is trained on a custom dataset for binary 

class openings and covered and deployed on an android smartphone. When an application captures 

an image, the device also extracts the accelerometer values to determine the inclination in parallel 

with the classification task of the device to predict the final output as floor (openings/ covered), 

wall (openings/covered), and roof (openings / covered). The proposed worker-driven approach will 

be extended with other case scenarios at the construction site.  
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1. INTRODUCTION 

 A dynamic and complex working environment and contravening safety rules can expose 

workers to risk. Due to that, the construction industry has a leading accidents rate than other 

industries [1]. The most common construction accidents include Falling from Height (FFH), 

electrocution, being stuck in machinery, and being hit by an obstruction. Among these accidents, 

the FFH is the most frequent cause of accidents at the construction site [2]. Huang et al. [3] and 

Kang et al. [4] analyzed the records of Occupational Safety and Health Administration (OSHA) 

accidents and determined that the FFH raised by 8.3% from 2003 to 2017, which shows that the 

FFH is a severe problem, including the fall into opening or hole at the temporary supporting 
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platforms such as on-ground openings and scaffolding. There are various safety standards outlined 

by the (OSHA) such as covering gaps, holes, and openings to prevent worker falls [5].    

Two strategies utilized in the construction industry to prevent the injuries and fatalities of the 

workers are known as proactive and reactive [6]. The proactive method includes training 

construction workers before working at the construction site, such as the short-term training 

program. Secondly, the reactive strategy is based on the accident data analysis to identify factors 

contributing to fatalities on the construction site [2]. The reactive approach is considered more 

effective due to it’s ability to collect data in real-time using sensors and cameras [1]. FFH 

preventative methods include fixed safety equipment (such as opening covers and guardrails), 

travel restraint systems (such as safety belts), and fall arrest systems (such as full-body harness). 

On the other hand, imposing safety rules may improve safety protection equipment and is 

considered a reactive method to address the construction worker safety issue. The safety manager 

visits the construction site with the printed checklist for the safety rules compliance, which is a 

manual approach and is time-consuming and ineffective. Therefore, many researchers utilized the 

leading technologies such as computer vision and sensors to automate construction workers’ safety. 

The first leading technology is vision-based, adopted by researchers for worker safety monitoring 

[7] and worker action recognition for the automated safety inspection process at the construction 

site [4,8]. Recent research in computer vision-based construction safety monitoring has focused on 

developing a simple inspection system to detect safety preventive measures. Secondly, researchers 

utilized the inertia sensors (such as gyroscopes and accelerometers) due to the small size, 

portability, and low cost for safety monitoring [9,10]. Inertia sensors could be applied in the 

construction industry to monitor productivity, worker health, and safety [9]. Inertia sensors measure 

the sudden changes in the acceleration of a body and convert them to electrical signals. It can be 

used with an accelerometer to monitor position and orientation, but it’s more commonly used with 

a gyroscope (an instrument for measuring angular velocity) to detect orientation changes.  

This study proposed a worker-driven approach (a construction worker will report to the safety 

manager) that extends our prior research work [11]. The main aim of this work is to overcome the 

technical limitation of previously developed software that can recognize vertical openings (for 

example, windows “safe”) as an on-ground opening (unsafe) which is an erroneous classification. 

This study integrated built-in inertia sensors with computer vision on an android smartphone to 

recognize wall opening/covered, floor opening/ covered, and roof opening/covered. This approach 

is robust, precise, and provides accurate information on the inclination of captured images for the 

final prediction for the appropriate classification. This worker-driven approach can facilitate the 

safety management process and keeping records by involving workers. 

2. Proposed Method 

 This research has integrated deep learning-based computer vision with built-in inertia 

sensors in a smartphone. The paper presents an approach for image recognition and classification 

of objects by integrating CNN architectures with existing mobile sensing technologies. Figure 1 

demonstrates the process required to develop an integrated vision and inertia sensors-based 

application. We can visualize that the first step is to prepare an image dataset for two categories as 

opening and covered; once the dataset is prepared, the next step is to set up an anaconda 

environment for the TensorFlow framework. In the CNN development and training stage, the CNN 

is designed for custom class classification, training, and inference on the test dataset using 

TensorFlow [12]. 
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Moreover, deploying the image classification model on edge devices, the TensorFlow model is 

converted into TensorFlow Lite (Tflite) and attached metadata to specify the model description, 

such as the input image size and normalization, etc. The converted model and labels file (opening 

and covered in this scenario) were imported into Android Studio in the last stage. Once a worker 

captures an image, the application performs two main tasks: (1) it passes the image through the 

CNN for classification, and (2) it extracts built-in accelerometer sensor values (X, Y, Z-Axis) to 

determine the inclination. Finally, these extracted values are integrated with the CNN output for a 

final prediction as floor opening/covered, wall opening/covered, and roof opening/covered, as 

shown in Figure 2. Finally, the result is uploaded to the real-time database to maintain a record.  

 

Figure 1. Process Flow of the proposed method 

 

Figure 2. The graphical representation of the proposed worker-driven approach. The 

application extracts sensor readings parallel with CNN classification and then displays the 

integrated result at the end. 

2.1. Dataset Preparation 

 To train a deep learning-based image classification model, a large digital image dataset is 

required. As vision intelligence is an emerging technology in construction, acquiring labeled image 

datasets remains challenging in this domain. Therefore, the image dataset was obtained from 2 

sources (1) Google search engine and (2) recorded multiple videos at Construction Technology and 

Innovation Laboratory (ConTil), Chung-Ang University, Seoul, South Korea. Random frames were 

extracted from the recorded videos to prepare the image dataset using the Fast Forward MPEG 

(Ffmpeg) command-line tool in the Windows operating system. The next step in the dataset 

preparation is dataset cleaning, which is used to create a valuable dataset for image classification 

model training and remove unclear/indecent images. It is essential for model training because noise 

and ineffective image datasets can cause the model’s overfitting (learning noise). Moreover, we 

applied the hold-out technique to avoid overfitting; according to the hold-out approach, a total of 
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1000 images were prepared for the class “opening” and “covered” and divided into 800, 200 for 

training and validation, respectively [13].  

2.2. Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is utilized in this research work for image classification. 

The CNN model is designed by stacking multiple convolutional and max-pooling layers for the 

feature extraction from an input image. The CNN model is trained by providing many relevant and 

normalized image datasets, which go through layer by layer in a feed-forward manner to classify 

an image by comparing it with the ground truth. The learning rate of the CNN model was 0.001, 

the epochs were set to 250, and the adam optimizer was used due to the best experimental 

performance over all the other optimizers. The error is calculated at the last output layer based on 

the predicted and actual output differences. Then the backpropagation is performed to overcome 

the error, and this process continues until the model achieves less error, such as training and 

validation loss. This study has utilized the TensorFlow library to create an image classification 

model, an open-source software library used for machine learning algorithms. The developed 

model can be deployed on various systems using TensorFlow, from edge devices such as mobile 

and tablets to large computing systems. 

Figure 3 shows our image classification-based model, including multiple convolutional and max-

pooling layers. The convolutional (Conv2D) layer includes three essential parameters (1) number 

of filters, (2) kernel size, and (3) activation functions. The first Conv2D layer has 32 filters, with 

the 3x3 kernel size and Rectified Linear Unit (ReLu) activation function. As the network goes 

deeper, the number of filters increases with the power of 2. In the remaining Conv2D layers, the 

number of filters was assigned as 64, 128, and 256 for the 2nd, 3rd, and 4th, respectively. Although, 

the kernel size and activation function are the same for all layers. The next layer is max-pooling, 

which reduces the number of feature maps and amount of computing performed in a network; it is 

stacked next to each Conv2D layer. Following thorough, the next step is the using flatten layers; 

the output of the convolutional layers is in the form of 2 dimensions (2D), but the fully connected 

layers require 1D data; therefore, the flatten layer is attached before passing data to the fully 

connected layers (Dense layers). At the end of the network, we utilized two fully connected layers, 

which take high-level filtered images and convert them to a vector and a sigmoid activation 

function for binary classification (Covered or Opening) [12]. This CNN model used a one-node 

technique at the output layer, owing to the advantage of requiring few weights and biases.        

2.3. Deployment on Edge Devices 

 This section explains a process to convert and deploy the trained model from TensorFlow 

to TensorFlow lite (TFLite) to perform inference on edge devices. TFLite comprises tools for 

machine learning-related tasks and visualizing inference on edge devices such as smartphones and 

IoT to evade server-client round-trips without requiring the internet [14]. 

Two main pre-processing steps are required to deploy the Deep Learning model on edge devices: 

The TFLite converter converts the trained model into TFLite format that requires the 

TensorFlow model as input and generates the TfLite model (an optimized Flat Buffer 

format identified by .tflite file extension). Additionally, the quantization technique is 

applied during conversion to limit the model size to 250 MB as per the requirement of 

the Android Studio development environment. 

Another essential step is to generate metadata that describes model information such as input 

information, normalization of input data, output information, and labels. The 

normalization technique is utilized to convert values to a common scale. The authors set 
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the normalization value 127.5 for the model mean and standard deviation. Finally, the 

quantized model is exported into Android Studio and used to develop the proposed 

integrated application. 

 

Figure 3. Designed CNN for binary image classification 

2.4. Built-In Inertia Sensors 

 Smartphones and tablets have become a significant part of our daily life. Smartphones, in 

particular, need to be one-time calibration to ensure that they provide accurate readings for both 

motion and orientation data. Inertia sensors are often used in robotics to detect a moving object’s 

orientation and velocity. Most commercially available smartphones include an accelerometer, 

gyroscope, ambient temperature sensor, light sensor, barometer, proximity sensor, and GPS, among 

other sensing technologies. The device’s acceleration is measured via accelerometer sensors; all 

three axes of the accelerometer, X, Y, and Z, can be read. The gyroscope detects the smartphone’s 

roll, pitch, and yaw motions about the X, Y, and Z axes, which detects the device’s rotation rate. 

In this study, we need the inclination angle of the smartphone to integrate with the CNN output for 

final classification. We have cloned the available open-source code of the BasicAirData Clinometer 

application. This simple android-based application uses onboard accelerometers to measure the 

inclination angles of the device regarding gravity’s direction [15]. So, we have manually analyzed 

and extracted all three axis values on different angles with different ranges. Based on these values, 

an application predicts the final output as horizontal (floor) opening/covered, roof opening/covered, 

and vertical (wall) opening/covered. The application required a one-time calibration (to overcome 

uncertainty) of the built-in sensors in a smartphone to give the best performance.  

The extracted accelerometer values used to predict the final output can be seen in Table 1. Based 

on the extracted values, an application determines the device's inclination. If the X-Axis value 

ranges between -65 to 30, Y-Axis -10 to 50, and Z-Axis -30 to 30 while capturing an image, this 

CNN output integrated with an accelerometer sensor is classified as a horizontal inclination (Floor 

opening / covered). Suppose the X-Axis value ranges between -30 to 30, Y-Axis 50 to 90, and Z-

Axis -40 to 40 while capturing an image. In that case, this CNN output is integrated with an 

accelerometer sensor classified as a vertical inclination (Window opening / covered). Finally, 

suppose the Z-Axis is 40 to 90 while capturing an image. In that case, this CNN output is integrated 

with an accelerometer sensor classified as roof opening / covered. 

Table 1. Accelerometer Values for Inclination 
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X-Axis Y-Axis Z-Axis Output (Inclination) 

-65 to 30 -10 to 50 -30 to 30 Horizontal (Floor) 

-30 to 30 50 to 90 -40 to 40 Vertical (Window) 

- - 40 to 90 Roof (Scaffolding) 

3. Results and Evaluation 

 The developed application is tested at the ConTIL. Figure 4 depicts the graphical user 

interface and the final prediction by fusing built-in inertia sensors with computer vision. We have 

tested an application for a horizontal opening, horizontal covered, roof opening, and roof covered. 

Note that, due to the limited access to the actual construction site, we assumed scaffolding 

opening/covered with a horizontal inclination of accelerometer sensor as floor opening/covered, 

and scaffolding opening/covered image captured from the first floor of scaffolding as roof 

opening/covered. The trained model was evaluated using a confusion matrix, where TP (opening) 

was 127, FP was 5, TN (covered) was 65, and FN was 3, which can be seen in Figure 5. Moreover, 

Table 2 shows the CNN model’s evaluation matrices, which achieved precision, recall, F1-score, 

and validation accuracy with 96.9%, 97.6%, 97.24%, and 96.5%, respectively, with a validation 

loss of 0.017, which is commendable. 

4. Conclusion and Future Work 

 This research proposed a worker-driven approach for opening detection using vision-based 

and built-in inertia sensors-based integrated android applications to classify different openings at 

the construction site. The designed CNN is trained on two classes of opening and covered custom 

dataset based on the CNN output; the developed application extracts accelerometer values to 

determine the inclination of the device to predict final output as floor opening/covered, wall 

opening/covered, and roof opening/covered. Following that, the integration of computer vision and 

inertia sensors is performed. The final predicted output is uploaded into the real-time firebase 

database to keep track of the inspection. This approach helps prevent falls by involving workers in 

the reporting process for safety rules compliance. This developed application would be extended 

with other safety rules compliance for the lenience of the safety inspector. To promote the worker-

driven approach, incentives in coins or an appreciation system are required. Consequently, the 

proposed method can be improved by incorporating an appropriate reward mechanism. 

 

  

Figure 4. The user interface of the developed application 
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Figure 5. Confusion Matrix for binary classification 

Table 2. Evaluation Matrices for CNN 

Evaluation Index Test Results 

Precision 96.9% 

Recall 97.6% 

F1-Score 97.24% 

Validation Loss 0.017 

Accuracy 96.5% 
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