• Title/Summary/Keyword: dermal fibroblasts

Search Result 245, Processing Time 0.032 seconds

Sulforaphane Inhibits Ultraviolet B-induced Matrix Metalloproteinase Expression in Human Dermal Fibroblasts

  • Lee, Sam Youn;Moon, Sun Rock
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.6
    • /
    • pp.922-928
    • /
    • 2012
  • Sulforaphane [1-isothiocyanato-4-(methylsulfinyl)-butane] is one of the most abundant isothiocyanates in some cruciferous vegetables, especially broccoli. Sulforaphaene has been shown to exhibit many pharmacological activities, including anti-oxidant, anti-inflammatory and anti-microbial activities. However, the anti-skin photoaging effects of sulforaphane have not yet been reported. In the present study, we investigated the inhibitory effects of sulforaphane on MMP-1 and -3 expressions of the human dermal fibroblasts via various in vitro experiments and elucidated the pathways of inhibition. Western blot analysis and real-time PCR revealed sulfiraphane inhibited UVB-induced MMP-1 and -3 expressions in a dose-dependent manner. UVB strongly activated nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activity, which was determined by NF-${\kappa}B$ DNA binding activity. UVB-induced NF-${\kappa}B$ activation and MMP expression were completely blocked by sulforphane. These findings suggest that sulforaphane could prevent UVB-induced MMPs expressions through inhibition of NF-${\kappa}B$ activation.

Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors

  • Han, Jeong A.;Kim, Jong-Il
    • Genomics & Informatics
    • /
    • v.15 no.2
    • /
    • pp.56-64
    • /
    • 2017
  • We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)-selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2-selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor ${\beta}$ receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.

Effect of nitric oxide on the expression of matrix metalloproteinases by the UV irradiated human dermal fibroblasts

  • Taeboo Choe;Lee, Bumchun;Park, Inchul;Seokil Hong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2002
  • The production of matrix matalloproteinases(MMPs) by the UV irradiated skin fibroblast and the degradation of extracellular matrix(ECM) by these enzymes is known as one of the main reasons of photoaging. Recently, Fisher group showed that the MMP expression is mainly regulated by the mitogen-activated protein(MAP) kinas family, such as extracellular signal-regulated kinase(ERK), c-Jun amino-terminal kinase(JNK) and p38, each of which forms a signaling pathway. In this work we first examined the effect of nitric oxide (NO) on the production of MMP-1 and MMP-2 by the human dermal fibroblasts (HDFs). NO is a multifunctional messenger molecule generated from L-arginine and involved in many kinds of signaling pathway. We found that the treatment of HDF with NO donor, sodium nitroprusside (SNP) enhanced the expression of MMPs with or without UV irradiation and the treatment with nitric oxide synthase (NOS) inhibitors resulted in the significant decrease of MMPs production. From these results, we concluded that the production of MMPs by the UV irradiated HDF is regulated through the signaling pathway involving NO and cyclic GMP.

Pueraria montana var. lobata Root Extract Inhibits Photoaging on Skin through Nrf2 Pathway

  • Heo, Hee Sun;Han, Ga Eun;Won, Junho;Cho, Yeonoh;Woo, Hyeran;Lee, Jong Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.518-526
    • /
    • 2019
  • Pueraria montana var. lobata is a bioactive substance with various beneficial health effects and has long been extensively used as a traditional medication for the treatment of fever, acute dysentery, diabetes, and cardiovascular diseases in Northeast Asian countries. The purpose of this study was to evaluate the cytoprotective activity of Pueraria montana var. lobata ethanol extract (PLE) for ultraviolet B (UVB)-induced oxidative stress in human dermal fibroblasts (HDF). It was hypothesized that PLE treatment ($25-100{\mu}g/ml$) would reduce intracellular reactive oxygen species (ROS) levels as well as increase collagen production in UVB-irradiated HDF. The results confirmed this theory, with collagen production increasing in the PLE treatment group in a dose-dependent manner. In addition, regulators of cellular ROS accumulation, including HO-1 and NOQ-1, were activated by Nrf2, which was mediated by PLE. Hence, intracellular levels of ROS were also reduced in the PLE treatment group in a dose-dependent manner. In conclusion, PLE increases collagen production and maintains hyaluronic acid (HA) levels in human dermal fibroblasts exposed to UVB-irradiation, thereby inhibiting photoaging.

Acceleration of Wound Healing and Collagen Deposition in Rat Skin by High Voltage Pulsed Current Stimulation (고전압맥동전류자극이 흰쥐 피부 창상치유와 교원질 축적에 미치는 효과)

  • Lee Jae-hyoung;Song In-young;Kim Jong-Gyu
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to investigate the effect of high voltage pulsed current stimulation (HVPCS) on the healing rate of a dermal wound in a rat. We also determined the mechanism of promoting healing by HVPCS. Twenty male Sprague-Dawley rats were randomly divided into two group; HVPCS group (n=10) and control group (n=10). The HVPCS rats received electrical stimulation with a current intensity of 50 V at 100 pps for a duration of 30 minutes, while the control group was given the same treatment without electricity for a week. The biopsy specimens were fixed in formalin, embedded in paraffin and stained with Masson's trichrome, hematoxylin and eosin (H&E). The fibroblasts and collagen density were counted using a light microscope and computerized image analysis system and calculated as the density and the percent. A Student t-test showed a significantly higher wound healing rate of the HVPCS group than control (t=-4.161, p<0.001). The fibroblasts in the HVPCS group were higher than in the control group (t=-4.921, p<0.001). The density of collagen in the HVPCS group was also higher than in the control group (t=-4.367, p<0.001). These results indicate that the HVPCS accelerated the rate of healing in dermal wound, and increased fibroblasts and collagen density in the regenerative dermis. These findings suggest that the HVPCS may activate fibroblasts by alteration of the electrical environment, and it may increase collagen synthesis in the regenerative dermal wound.

  • PDF

The Phytoestrogenic Effect of Daidzein in Human Dermal Fibroblasts (피부 섬유아세포에서 다이드제인의 파이토에스트로겐 효과)

  • Kim, Mi-Sun;Hong, Chan Young;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.279-287
    • /
    • 2014
  • Estrogen deficiency results in a reduction of skin quality and function in postmenopausal women. Over the past decade, many studies have supported that estrogen provides anti-aging effects as a result of the ability of estrogen to prevent skin collagen decline, restore skin elasticity, and increase skin hydration in postmenopausal women skin. Due to their structural similarity with estrogen, isoflavones have been called phytoestrogens. Photoprotective effects of isoflavones are well established while their estrogenic-like activities are not fully understood in human skin. In this study, we investigated whether daidzein, an effective isoflavone, has phytoestrogenic activity and induces transcriptional change of extracellular matrix components in dermal fibroblasts. We examined the luciferase activity of daidzein and ${\beta}$-estradiol using transiently transfected NIH3T3-ERE cells. The estrogenic receptor-dependent transcriptional activity was increased in a dose-dependent manner when treated with daidzein, with a maximum of 2.5-fold induction at $10{\mu}g/mL$ of daidzein compared with non-treated control. In addition, daidzein significantly in creased the expressions of collagen type I, collagen type IV, elastin, and fibrillin-1 in human dermal fibroblasts. By comparing with the effects of ${\beta}$-estradiol through out all the experiments, we confirmed that daidzein had estrogenic activity and function in fibroblasts. These results suggest that daidzein-based application, having both photoprotective and phytoestrogenic effects, may be a powerful approach for skin anti-aging of postmenopausal women.

Application of a Composite Skin Equivalent using Collagen and Acellular Dermal Matrix as the Scaffold in a Mouse Model of Full-thickness Wound (콜라겐과 무세포진피를 이용한 혼합형 인공피부 개발 및 쥐 모델에서 창상치료 적용)

  • Lee, Dong Hyuck;Youn, Jin Chul;Lee, Jung Hee;Kim, In Seop
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.42-49
    • /
    • 2014
  • The aim of this study was to develop a composite human skin equivalent for wound healing. Collagen type1 and acellular dermal matrix powder were utilized as the scaffold with dermal fibroblasts and keratinocytes for the development of a composite human skin equivalent. Fibroblast maintained the volume of composite skin equivalent and also induced keratinocytes to attach and proliferate on the surface of composite skin equivalent. The composite human skin equivalent had a structure and curvature similar to those of real skin. Balb-C nu/nu mice were used for the evaluation of full-thickness wound healing effect of the composite human skin equivalent. Graft of composite skin equivalent on full-thickness wound promoted re-epithelialization and granulation tissue formation at 9 days. Given the average wound-healing time (14 days), the wound in the developed composite skin equivalent healed quickly. The overall results indicated that this three-dimensional composite human skin equivalent can be used to effectively enhance wound healing.

Application of Human Dermal Fibroblast and Keratinocyte on Allogenic Dermis(AlloDerm®) (동종진피에 사람진피 섬유모세포와 각질세포를 적용한 인공피부의 실험적 제작)

  • Oh, Jung Chul;Lim, Yeung Kook;Jeong, Jae Ho
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.601-605
    • /
    • 2006
  • Purpose: Large skin defect by various causes, should be covered by autologous skin graft. But, the donor site of autologous skin graft is limited and leaves permanent donor scar and contracture. There have been our trial to engineer artificial skin using allogenic dermis (AlloDerm) with basement membrane. Methods: Dermal and epidermal layer were separated by immersing in dipase solution for 30 minutes, and the separated layers were treated with 0.05% trypsin for 10 minutes. And then each layer was cultivated to fibroblasts and keratinocytes on a culture medium. Fibroblasts were first penetrated into basement membrane of allogenic dermis facing down, then allogenic dermis was flipped over to face up and keratinocytes were transplanted to allogenic dermis. Results: Observing artificial skin fabricated in vitro, we found following: 1) The artificial skin opened in air for 5 days formed epidermal layer. In dermal layer, fibroblast was distributed evenly among all. 2) The artificial skin opened in air for 30 days formed thicker and thicker, and it formed basement membrane, spinous and granular layers. PAS stain to confirm existence of basement membrane showed positive reaction. 3) Cytokeratin 10 stain to confirm the formation of epidermal layer showed positive reaction. 4) The formation of thick keratin, lamellar body and desmosome similar to human skin were observed in result of an electron micrograph. Conclusion: As a result of research, the structure seen in normal skin such as rete ridge, is found in reproduced artificial skin. This type of artificial skin can be used as a useful model for investigating skin disease and for clinical application also.

Effect of Antioxidation and Inhibition of Matrix Metalloproteinase-1 from Ligularia fischeri (곰취의 항산화와 UVA에 의한 MMP-1 발현 저해효과)

  • Na, Young;Kim, Jin-Hwa;Sim, Gwan-Sub;Lee, Bum-Chun;Pyo, Hyeong-Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.3 s.58
    • /
    • pp.129-134
    • /
    • 2006
  • In this study, we examined the effects of antioxidant, lipid peroxidation inhibition and suppression of UVA-induced MMP-1 expression in human dermal fibroblasts. Ligularia fischeri extract showed free radical scavenging effect by 82.3% at 5 mg/mL and superoxide radical scavenging effect by 79.3% at 5 mg/mL in the kanthine/xanthine oxidase system, respectively. At the concentration of $500{\mu}g/mL$, L. fischeri extract showed 97% inhibition on lipid peroxidation of linoleic acid. UVA induced MMP expression in human dermal fibroblasts was reduced 35% by treatment with $100{\mu}g/mL$ of L. fischeri extract. These results suggest that L. fischeri extract can be used for an anti-aging agent by antioxidation, lipid peroxidation inhibition and reducing UVA-induced MMP-1 production.

Fabrication of Micro Patterned Fibronectin for Studying Adhesion and Alignment Behavior of Human Dermal Fibroblasts

  • Lee, Seung-Jae;Son, Young-Sook;Kim, Chun-Ho;Choi, Man-Soo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.348-356
    • /
    • 2007
  • The aim of this study was to fabricate a submicro-and micro-patterned fibronectin coated wafer for a cell culture, which allows the positions and dimensions of the attached cells to be controlled. A replica molding was made into silicon via a photomask in quartz, using E-beam lithography, and then fabricated a polydimethylsiloxane stamp using the designed silicon mold. Hexadecanethiol $[HS(CH_2){_{15}}CH_3]$, adsorbed on the raised plateau of the surface of polydimethylsiloxane stamp, was contact-printed to form self-assembled monolayers (SAMs) of hexadecanethiolate on the surface of an Au-coated glass wafer. In order to form another SAM for control of the surface wafer properties, a hydrophilic hexa (ethylene glycol) terminated alkanethiol $[HS(CH_2){_{11}}(OCH_2CH_2){_6}OH]$ was also synthesized. The structural changes were confirmed using UV and $^1H-NMR$ spectroscopies. A SAM terminated in the hexa(ethylene glycol) groups was subsequently formed on the bare gold remaining on the surface of the Aucoated glass wafer. In order to aid the attachment of cells, fibronectin was adsorbed onto the resulting wafer, with the pattern formed on the gold-coated wafer confirmed using immunofluorescence staining against fibronectin. Fibronectin was adsorbed only onto the SAMs terminated in the methyl groups of the substrate. The hexa (ethylene glycol)-terminated regions resisted the adsorption of protein. Human dermal fibroblasts (P=4), obtained from newborn foreskin, only attached to the fibronectin-coated, methyl-terminated hydrophobic regions of the patterned SAMs. N-HDFs were more actively adhered, and spread in a pattern spacing below $14{\mu}m$, rather than above $17{\mu}m$, could easily migrate on the substrate containing spacing of $10{\mu}m$ or less between the strip lines.