• Title/Summary/Keyword: derivative work

Search Result 123, Processing Time 0.026 seconds

CERTAIN FORMULAS INVOLVING A MULTI-INDEX MITTAG-LEFFLER FUNCTION

  • Bansal, Manish Kumar;Harjule, P.;Choi, Junesang;Mubeen, Shahid;Kumar, Devendra
    • East Asian mathematical journal
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Since Mittag-Leffler introduced the so-called Mittag-Leffler function, a number of its extensions have been investigated due mainly to their applications in a variety of research subjects. Shukla and Prajapati presented a lot of formulas involving a generalized Mittag-Leffler function in a systematic manner. Motivated mainly by Shukla and Prajapati's work, we aim to investigate a generalized multi-index Mittag-Leffler function and, among possible numerous formulas, choose to present several formulas involving this generalized multi-index Mittag-Leffler function such as a recurrence formula, derivative formula, three integral transformation formulas. The results presented here, being general, are pointed out to reduce to yield relatively simple formulas including known ones.

Knowledge-based learning for modeling concrete compressive strength using genetic programming

  • Tsai, Hsing-Chih;Liao, Min-Chih
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.255-265
    • /
    • 2019
  • The potential of using genetic programming to predict engineering data has caught the attention of researchers in recent years. The present paper utilized weighted genetic programming (WGP), a derivative model of genetic programming (GP), to model the compressive strength of concrete. The calculation results of Abrams' laws, which are used as the design codes for calculating the compressive strength of concrete, were treated as the inputs for the genetic programming model. Therefore, knowledge of the Abrams' laws, which is not a factor of influence on common data-based learning approaches, was considered to be a potential factor affecting genetic programming models. Significant outcomes of this work include: 1) the employed design codes positively affected the prediction accuracy of modeling the compressive strength of concrete; 2) a new equation was suggested to replace the design code for predicting concrete strength; and 3) common data-based learning approaches were evolved into knowledge-based learning approaches using historical data and design codes.

Design of Multivariable PID Controllers: A Comparative Study

  • Memon, Shabeena;Kalhoro, Arbab Nighat
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.11-18
    • /
    • 2021
  • The Proportional Integral Derivative (PID) controller is the most popular industrial controller and more than 90% process industries use this controller. During the past 50 years, numerous good tuning methods have been proposed for Single Input Single Output Systems. However, design of PI/PID controllers for multivariable processes is a challenge for the researchers. A comparative study of three PID controllers design methods has been carried-out. These methods include the DS (Direct Synthesis) method, IMC (Internal model Control) method and ETF (Effective Transfer Function) method. MIMO PID controllers are designed for a number of 2×2, 3×3 and 4×4 process models with multiple delays. The performance of the three methods has been evaluated through simulation studies in Matlab/Simulink environment. After extensive simulation studies, it is found that the Effective Transfer Function (ETF) Method produces better output responses among two methods. In this work, only decentralized methods of PID controllers have been studied and investigated.

Studies Toward the Total Synthesis of Perhydrohistrionicotoxin

  • Ko, Hyo-Jin;Lee, Tae-Ho;Kim, Shin-Ae;Kim, Sang-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.179.3-179.3
    • /
    • 2003
  • Natural histrionicotoxin, a substance isolated from the skins of the "arrow poison frog" and its fully hydrogenated derivative, perhydrohistrionicotoxin (pHTX), have been the subject of synthetic investigation because of their important neurophysiological activity and a unique framework. In this work, we could obtained the appropriately functionalized spiropiperidine compound as a formal precursor of perhydrohistrionicotoxin. An important feature of this synthesis is the creation of a stereogenic center by using Ireland-Claisen Rearrangement, and Ring-Closing Metathesis (RCM).sis (RCM).

  • PDF

DECOMPOSITION FOR CARTAN'S SECOND CURVATURE TENSOR OF DIFFERENT ORDER IN FINSLER SPACES

  • Abdallah, Alaa A.;Navlekar, A.A.;Ghadle, Kirtiwant P.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.433-448
    • /
    • 2022
  • The Cartan's second curvature tensor Pijkh is a positively homogeneous of degree-1 in yi, where yi represent a directional coordinate for the line element in Finsler space. In this paper, we discuss the decomposition of Cartan's second curvature tensor Pijkh in two spaces, a generalized 𝔅P-recurrent space and generalized 𝔅P-birecurrent space. We obtain different tensors which satisfy the recurrence and birecurrence property under the decomposition. Also, we prove the decomposition for different tensors are non-vanishing. As an illustration of the applicability of the obtained results, we finish this work with some illustrative examples.

Permeability of a Capsaicin Derivative $[{14}^C]DA-5018$ to Blood-Brain Barrier Corrected with HPLC Method

  • Kang, Young-Sook;Kim, Jong-Mi
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.165-172
    • /
    • 1999
  • In the present work , the transport mechanism of a capsaicin derivative, DA-5018, through blood-brain barrier (BBB) has been investigated to evaluate the feasibility of potential drug development. The result of pharmacokinetic parameters obtained from the intravenous injection of plasma volume marker,$[3^H]RSA$ and $[{14}^C]DA-5018$, indicated that both AUC, area under the plasma concentration curve and VD, volume of distribution in brain of $[3^H]RSA$ agreed with those reported ($1620{\pm}10 $percentage injected dose minute per milliliter (%IDmin/ml) and $12.0{\pm}0.1{\mu}l/g$, respectively). Elimination half-life and AUC of $[{14}^C]DA-5018$is corrected by the PHLC analysis, 19.6$\pm$1.2 min and 7.69$\pm$0.85% IDmin/ml, respectively. The metabolic rate of $[{14}^C]DA-5018$was very rapid. The blood-brain barrier permeability surface area (PS) product of $[{14}^C]DA-5018$ was calculated to be 0.24$\pm$0.05 $\mu$l/min/g. The result of internal carotid artery perfusion and capillary depletion suggested that [14C]DA-5018 pass through BBB with the time increasingly. Investigation of transport mechanism of $[{14}^C]DA-5018$ using agonist and antagonist suggested that vanilloid (capsaicin) receptor did not exist in the BBB, and nutrient carrier system in the BBB has no effect on the transport of DA-5018. In conclusion, despite the fact that penetration of DA-5018 through BBB is significant, the intact drug found in the brain tissue is small because of a rapid metabolism. Therefore, for the central analgesic effect of DA-5018, the method to increase the metabolic stability in plasma and the brain permeability should be considered.

  • PDF

Analysis of Binodal Structures of Final State Distributions in Vibrational Predissociations of Triatomic van der Waals Molecules

  • 이천우
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1193-1203
    • /
    • 1995
  • In this work, we focused on the setup of the tools for the analysis of the final rotational state distribution of photofragments in vibrational predissociations of triatomic van der Waals molecules A-B2. We found that reflection principle used for the direct photodissociation processes can also be applied to find out the final rotational state distributions for indirect photodissociation processes. The quantity which represents the strength of rovibrational coupling between the quasi-bound state and the final state is reflected into the mirror of the classical angular momentum function, instead of the initial state before light absorption used in the reflection principle of direct processes. The sign change in the first derivative of the interaction potential with respect to the bond distance of B2 is found to be the source of the binodal structures in the final rotational distributions of photofragments in the model system studied in this work. In MQDT analysis, short range eigenchannel basis functions were found to be localized in angle, in the previous work [Lee, C.W. Bull. Korean Chem. Soc. 1995, 16, 957.] and may be called angle functions. Angle functions enjoy simple geometrical structures which have simple functional relations with the final state distributions of photofragments. Two processes take place along the angle functions which resemble the quasi-bound state and dominate over other processes. Two such angle functions are found to be not only localized angularly but also localized either one of ends of B2 in motions along the bond of B2. These dominating photodissociation processes, however, cancel each other. This cancellation causes photodissociation to depend sensitively on the interaction potential at other angles than the dominant one. Part of potential surface where much larger torque exists can now play an important role in photodissociation. MQDT also enables us to see which processes play important roles after cancellation. This is done by examining the amounts of time delayed by asymptotic eigenchannels.

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

Flexible Docking of an Acetoxyethoxymethyl Derivative of Thiosemicarbazone into Three Different Species of Dihydrofolate Reductase

  • Choi, In-Hee;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.807-816
    • /
    • 2002
  • Dihydrofolate reductases (DHFR) of human, Candida albicans and E. coli were docked with their original ligands of X-ray crystal complex using QXP (Quick eXPlore), a docking program. Conditions to reproduce the crystal structures within the root mean square deviation (rmsd) of 2.00 $\AA$ were established. Applying these conditions, binding modes and species-specificities of a novel antibacterial compound, $N^4-(2-acetoxyethoxymethyl)-2-acetylpyridine$ thiosemicarbazone (MTSC), were studied. As the results, the docking program reproduced the crystal structures with average rmsd of six ligands as 0.91 $\AA$ ranging from 0.49 to 1.45 $\AA$. The interactions including the numbers of hydrogen bonds and hydrophobic interactions were the same as the crystal structures and superposition of the crystal and docked structures almost coincided with each other. For AATSC, the results demonstrated that it could bind to either the substrate or coenzyme sites of DHFR in all three species with different degrees of affinity. It confirms the experimentally determined kinetic behavior of uncompetitive inhibition against either the inhibitor or the coenzyme. The docked MTSC overlapped well with the original ligands and major interactions were consistent with the ones in the crystal complexes. The information generated from this work should be useful for future development of antibacterial and antifungal agents.

Synthesis and Characterization of New Poly(2,7-Carbazole) Derivative for Organic Solar Cells (유기 태양 전지 응용을 위한 새로운 카바졸계 고분자 합성 및 특성에 관한 연구)

  • Lee, Sang Kyu;Kim, Hee Joo;Park, Song Joo;Chae, Eun Ah;Cho, Jung Min;Moon, Sang-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • Polymer solar cells (PSCs) have attracted considerable academic and commercial interest because of their unique advantages, such as the facile manufacture of low cost, flexibility, lightweight, and solution processibility. Recently, high-performance polymer solar cells made from a mixture of poly(2,7-carbazole) derivatives, PCDTBT, and [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) have been reported, with maximum power conversion efficiency of 6.1%. In this work, we report new novel copolymers based on poly(2,7-carbazole) derivatives with a suite of electron-deficient moieties or electron-rich units. We systematically investigated the synthesis, thermal stability, as well as the optical and electrochemical properties of these polymers. Detailed synthetic scheme, optical, electrochemical, and photovoltaic properties of the copolymers will be presented.

  • PDF