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In this work, we focused on the setup of the tools for the analysis of the final rotational state distribution of photofrag­
ments in vibrational predissociations of triatomic van der Waals molecules A-B2. We found that reflection principle 
used for the direct photodissociation processes can also be applied to find out the final rotational state distributions 
for indirect photodissociation processes. The quantity which represents the strength of rovibrational coupling between 
the q나asi-bound state and the final state is reflected into the mirror of the classical angular momentum function, 
instead of the initial state before light absorption used in the reflection principle of direct processes. The sign change 
in the first derivative of the interaction potential with respect to the bond distance of B2 is found to be the source 
of the binodal structures in the final rotational distrib나ions of photofragments in the mode! system studied in this 
work. Tn MQDT analysis, short range eigenchannel basis functions were found to be localized in angle, in the previous 
work [Lee, C.W. Bull. Korean Chem. Soc. 1995,16, 957.] and may be called angle functions. Angle functions enjoy simple 
geometrical structures which have simple functional relations with the final state distributions of photofragments. 
Two processes take place along the angle functions which resemble the quasi-bound state and dominate over other 
processes. Two such angle functions are found to be not only localized angularly but also localized either one of 
ends of B2 in motions along the bond of B2. These dominating photodissociation processes, however, cancel each 
other. This cancellation causes photodissociation to depend sensitively on the interaction potential at other an응les 
than the dominant one. Part of potential surface where much larger torque exists can now play an important role 
in photodissociation. MQDT also enables us to see which processes play important roles after cancellation. This is 
done by examining the amounts of time delayed by asymptotic eigenchannels.

Introduction

It is a fundamental question in chemistry how and how 
fast the energies deposited into molecules by lights or by 
collisions redistribute inside the molecules and break up 
chemical bonds. The investigation of such nonradiative decay 
processes of excited states for medium-sized molecules is, 
however, greatly hampered by the presence of a lot of vibro- 

tational or electronic channels involved. It has been recog­
nized that van der Waals molecules provide the tractable 
system for state-to-state studies of intramolecular energy re­
distributions.1 Van der Waals bonds are so weak that even 
one quantum excitation of vibration motion is in many cases 
enough to break down the bond without exciting electronic 
states. Consequently the number of channels involved are 
greatly reduced in the predissociation of van der Waals mol­
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ecules. Besides such tractability and simplification, the study 
of predissociation mechanism of van der Waals molecules 
provides several useful applications. Unexpectively large low 
energy collision-induced vibrational relaxations may be un­
derstood from the van der Waals predissociation mechanism. 
Energy transfers in solids most probably take place with 
the same mechanism.

For this reason, a lot of theoretical and experimental work 
on the predissociation of van der Waals molecules have been 
done and reviewed by many authors.1 Nevertheless, we have 
reasons to study this system. For direct photodissociation 
process, reflection principles provide convenient tools, as 
greatly emphasized by Schinke,2 for understanding the ge­
neral shapes of absorption spectra or of final quantum num­
ber distributions of photofragments. According to the reflec­
tion principles, observables like dissociation spectra or final 
state distributions reflect the shapes of the molecular wave­
functions before light absorption. The reflections are done 
on the mirrors whose shapes are determined by the so called 
classical excitation functions of the conjugate variables to 
observables. For the indirect processes, however, reflections 
(rf wavefunctions before light absorption into the final state 
distributions can not be done as photodissociation processes 
pass some quasi-bound states. Thus we need other tools to 
investigate the photodissociation dynamics around resonan­
ces. In devising such tools, we have to deal with the difficul­
ties caused by the fact that observables such as the partial 
photodissociation cross sections and asymmetric parameters 
undergo dramatic changes around resonances.

Indirect photodissociation may be studied by assuming the 
presence of quasi-bound st가。옹 and then by considering their 
configuration interactions with continua as considered by 
Fano.3 By this way, Fano was able to get the analytical solu­
tions and showed that the total photodissociation cross sec­
tion can be described by a simple Fano-Beutler formula. The 
formula contains only four parameters, i.e. photodissociation 
cross section at off-resonance (background), resonance ener­
gy, lifetime, and line profile index. He could show that asym­
metric shapes, often seen in photoionization spectra, derives 
from the interferences between resonance and principal con­
tributions. Unfortunately, he only obtained the total photodi­
ssociation cross sections. Combet-Famoux and I independen­
tly derived the formula for the partial photodissociation cross 
section which has the identical form with the Fano-Beutler 
one except for the line profile index which is now a complex 
number in general.4 Since the analytical form of photodisso­
ciation cross section around a resonance was obtained, we 
could tell what parameters and which combinations of them 
are responsible for the observables. Using this analytical so­
lution, the theoretical basis was given in Ref. 4 for the Gold­
en-rule like expression which is known to be good for the 
treatment of predissociating system of van der Waals mole­
cules. In the Golden-rule like expression, final state distribu­
tions after photodissociation do not depend on the wavefunc­
tions before light absorption. They are determined by the 
coupling between quasi-bound states and final states via in­
teraction potentials. This Golden-rule like formula is one of 
the starting point of devising the tools for the analysis of 
predissociation dynamics. Section 3 will show that a kind 
of rotational reflection principle similar to that in the direct 
photodissociation may al앙。be applied for obtaining the final 
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rotational state distributions when an infinite order sudden 
approximation (IOS) is applied for the final state in the Gold­
en-rule like fornmla.

Though Fano's configuration interaction theory yields an 
analytical solution on photodissociation processes, it has fun­
damental drawbacks. From the outset, it assumes the exis­
tence of a quasi-bound state as a separate thing from the 
continua. Theoretically, there is no fundamental difference 
between continuum and bound states. Wavefunctions of mo­
tions along some channels become bound and continuum 
states as the energies of motions become negative and posi­
tive, respectively. This view of bound states as being pro­
duced by the closed channels is simpler than that of configura­
tion interaction theory in that bound and continuum states 
are treated on the same footing. Then interactions between 
bound and continuum wavefunctions in the configuration in­
teraction theory are replaced by the channel interactions be­
tween closed and open channels. Usually, as a closed channel 
contains a series of bound states like a Rydberg series, treat­
ing the interactions between a series of bound states and 
a continuum by a channel interaction between a closed and 
an open channel provides simpler theoretical framework.

Such a view of seeing interactions between bound states 
and continua as the ones among channels and seeing the 
existence of bound states as derived from the existence of 
closed channels were implemented as the multichannel quan­
tum defect theory by Seaton.5 Fano realized that channel 
interaction옹 which are very complicated in nature occur 
mostly in the small region of space and affect the observables 
in the asymptotic region only through the eigenphases of 
eigenchannel states in the inner small region (called short- 
range eigenchannel states by him). Then he could identify 
small numbers of parameters which are characteristics of 
channel interactions and which vary slowly as functions of 
energy. Such small numbers of parameters yield the compli­
cated spectra as functions of energy around resonances when 
boundary conditions at the asymptotic region are applied and 
some channels become closed.

In the previous papers, successful implementation of 
MQDT to the inelastic scattering and predissociation of tri- 
atomic van der Waals molecules was reported.6 In this work, 
MQDT will be used as a tool for investigating predissociation 
dynamics of triatomic van der Waals molecules. Section 4 
shows how to use MQDT to examine further in detail what 
is going on during the vibrational predissociation of van der 
Waals predissociation.

Though the purpose of this paper is to develop rather 
general analytic tools for predissociation dynamics, particular 
attention will be paid on the analysis of the binodal structure 
observed in experiments with the model potential. Analysis 
based on the real potential will be deferred for the future 
work.

System

The system used here is the same as the one used in 
Ref. 6. Let us describe it briefly. The system is the one 
of the vibrational predissociation of triatomic van der Waals 
molecules. Triatomic van der Waals molecules are restricted 
to rare gas-homonu이ear halogen diatomic molecules. Empiri­
cal potentials for them like NeCU, HeCh7 are well established 
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owing to the state-to-state measurements available for them. 
The interaction potential between A and B2 in AB2 triatomic 
system used by Halberstadt et al.8 for NeCl2 system has the 
following form (a slightly modified form for HeCh)

F(R7，y)=Vm(R/,Y), when R£R*,

WS，Y)=Kdw(/，Y)+(yM —Kdw)e”('듷春)% when RZR*, (】)

in the Jacobi coordinates Rf r, y that denote the distance 
between A and the center of mass of B2r the bond distance 
of B2, and the angle between R and r, respectively. Vm㈤乙Y) 
and Kdw are given as

VM(R,r，Y)=，AB 支{[厂寸酒7細一：口2—1}2 (2)

1 = 1

+庆M{[厂H奸嘟一I]」가2, (3)

Kdw(R，Y)- - 떵"----욓” , ⑷

where R® is the distance between A and fh B atom, R 
is the same as above, and other parameters are constant 
that are adjusted to yield the best fit to the experimental 
values. Two Legendre terms are retained for Ce(Y)and 丫), 

e.g.,

C6(y)=C&)+C^Ccosy). (5)

R* is chosen as the inflection point of the atom-atom Morse 
potentials and given by R*=蹲汁 ln2/acM. The parameters 
used in this paper are the same as those of Ref. 6 and re­
peatedly given here in Table I for s이「completeness.

With this interaction potential, the Hamiltonian for the 
triatomic van der Waals molecules AB2 is given in the Jacobi 
coordinates by9

H= -느姦 +為 + 金衫 + 修丫)5舟), (6)

with

Hb2(T)= -■温云+ 卩成)， (7)

that denotes the vibrational Hamiltonian of B2. m and g de­
note the reduced mass of A and the center of mass of B2 
and of B2, respectively; J, the angular momentum operator 
of B2; and I, the orbital angular momentum operator of the 
relative motion of A and the center of mass of B2.

The values of total angular momentum operator 7=7+Z 
as is well known both experimentally and theoretically, do 
not affect the predissociation dynamics much and is set to 
zero hereafter. This simplifies the Hamiltonian as 7 can be 
set to being equal

When the wavefunctions ¥一叩5丫)to the dissociation 
channel i={vj} are expanded in base functions
珞(Y，0) for the rovibrational channel 7 =切％'} as

%R,，；y)=以皿'。；丫)X舌(R)， (8)

the close-coupling equations are given as
若 *+-矗*，，,(R)+/,,"CR*,0)=O,⑼

with

峠=2m[E-Bj(j +1)—仞 + , (10)

and

K”；侦) = pY 옪iny』卄郵仇丫)卩㈤乙 Y)・ (11)

In the practical calculations of the interaction po­
tential is expanded into Legendre polynomials and then the 
angle integration is performed analytically to yield the for­
mula in terms of 3j symbols.

The real symmetric K matrix in Eq. (26) is easily obtained 
by simply replacing exp(± ikiR) or sin屁R and cos知R in the 
conventional close-coupling computer code with the energy 
normalized base pair/(J?) and ^(/?). The important difference 
between the close-coupling and the K matrix calculation is 
that the subindex i includes both open and closed channels 
for the latter while only open channels for the former.

Analysis of rotational state distribution 
by IOS

Infinite order sudden approximation (IOS)10 assumes pho­
todissociation processes to take place at fixed angles y. In 
our problem, we apply IOS to the final state wavefunction 
in the Golden-rule like formula which is known to be appli­
cable for the predissociations of van der Waals molecules.1-4 
In the Golden-rule like formula, partial photodissociation 
cross sections。而 to the dissociation channels {nj} are as­
sumed to be proportional to

% oc 2히(SM*5)|2. (12)

¥广어“ are approximately obtained by IOS method. If we con­
sider the continuum wavefunctions without closed channel 
contributions, or without m —1 channel contributions, IOS 
continuum wavefunctions satisfy the following ordinary dif­
ferential equations

[-느 条 +矗+B•产+E”=°+僦丫)]炒可끼Y)

=gs(끼丫), (13)

where E„=o is the vibrational energy of the diatomic m이 

cule when its vibrational quantum number is zero. As men­
tioned earlier, J=0 was assumed and j and I have identical 
values of, let us say, That is, f—P =；o(/o+D where ja 
is an arbitrary positive integer. The exact value of jo is not 
important. The reason for that may be easily understood 
if a IOS wavefunction is understood as a wavefunction at 
the short-range where the potential is highly negative and 
the rotational energy is much smaller than the kinetic energy 
of the relative motion along the dissociative coordinate R. 
IOS wavefunction YI0S satisfies an incoming wave boundary 
condition

e°%R|Y)f妒 U2[gW?+s 宓 t。叮

一)2囱广性厂和(가 cosEAo/?+n(Y)l as R*q, (14)

where T] is the phase shift at the given angle y.



1196 Bull. Korean Chem. Soc. 1995, Vol. 16, No. 12 Chun-Woo Lee

Hgure 1. The diagrams showing rotational reflection principle 
for the Golden-rule like expressions where continuum functions 
are treated with IOS approximation

With this IOS wavefunction,叩广伽低，；丫)may be obtained 
as

¥「佝)0化丫)=屮广자)(Ry)〈以0>= 密2%끼Y)馈(丫,0)〈이0>, (15)

as can be confirmed by the examination of the boundary 
conditions they satisfy

以W，0)¥'°s(끼 y)t屈 r 气 e邮*)(y，0)+厂伊喚(y，0)S舟%y)]

* 吃帅华。印,0)+2]%>(y,0)S拧％ t约
1

Tgy；，o(y，O)偈，-1 气#，緇力+糸性-"]}

=欢。,Y). (16)

Then

(饥 农((이 VI 月邳*今为=0>
츠Y1 g- 시 0>时?丫细汀输,0)0(丫)此), (17)

where A(y) is the modulus of the Allowing integral, 

4(Y)exp3i(Y)] = £dR】MR，Y)[씋 [『丫。，(끼 丫)

= /办号]角3,0加，，宙)[書 ]=,,¥'°气끼 丫)・ (18)

The n(Y)in Eq. (18) is the phase of 난)e IOS wavefunction 
YI0S(끼y):

YI0S(/?ly)= I YIOS(/?I y) I exp[/n(Y)]- (19) 

7(y) is shown in Figure 1. The figure shows that A(y) is 
zero at y=0 and n/2 where 사le phase 아lifts of the IOS 
function T10S(2?|y) are symmetric and their first derivatives 
with respect to y become zero. A(y) has a maximum at 72° 
for 3.044 a.u. If we apply a semiclassical approximation 
to the spherical harmonics,9

\彳篙* 쎠。+动丫-』
—j-n-'sin-%(exp{40+-j-)y-j]}

+ exp{T[(j+3j，L?]}), (20)

the integral appearing in Eq, (17), which will be denoted 
as I, may be approximated as

1= T，Ysini%4(Y)(exp{»[  ̂+ §)Y-孚 + n]}

+ exp{，h - (并.)丫+邻).
(21)

According to a semiclassical theory, the first derivative of 
T](y) with respect to y is the classical angular momentum 
function and will be denoted by /(y). Applying the steep de­
cent method, Eq. (21) becomes

(22)

The above equation tells u응 that the integral becomes larger 
as A(Y) and the inverse of the first derivative of the classical 
angular momentum function with respect to angle y are larg­
er. The geometrical visualization of this is just the reflection 
principle. Let us consider the overlapped graphs of the clas­
sical angular momentum /(y) and ^(y) as functions of angle 
Y as shown in Figure 1. At a given angle * say y0( let us 
draw a perpendicular line upward from the point [y。, AM)] 
to the point [y0» /(Yo)J and from there draw the horizontal 
line rightward to produce a curve of a rotational distribution 
in the diatomic photofragment, i.e. P(J) vs. J, as shown in 
Figure 1. According to the semiclassical theory, rotational 
quantum number j differ from rotational excitation function 
J(y) by 1/2, i.e. y4-l/2=/(y). Since rotational reflection princi­
ple based on Eq. (21) is a rough theory, is employed 
in Figure 1. The figure tells us that the rotational quantum 
number distribution reflects the shape of A(y)with the mir­
ror given by the classical angular momentum function.

Now let us find out, from the viewpoint of the IOS ap­
proximation, the explanation for the fact that a binodal structure 
is shown up when re=3.044 a.u. while it does not when re= 
5.044 a.u„ Figure 1 compares two graphs of 7(y) vs. y corre­
sponding to the cases of z>=3.044 and 5,044 a.u„ Two graphs 
have different maximum values. The 5.044 a.u. case has 
a bigger maximum value of A(y) owing to the bigger aniso­
tropy felt by A from B2 at the same value of R comparing 
to the re=3.044 a.u. case. Since the classical angular momen-
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* (Rl Y ) 
b

quasi-bound wavefunction (6channeL r0 = 3-044a.u)

■nglefY)

IOS wavefunction (6channel, rc = 3.044a.u.)

Figure 2. The quasi-bound wavefunction and the IOS wavefunc­
tion obtained by including 6 closed channels when 3.044 a.u.

turn function J(y) is the first derivative of T］(y) with respect 
to 丫 and t］(Y)may be written in phase amplitude method 
as

n(Y)= — 을J：Vo㈤Y)［砂s(끼 y)］2 dR, (23)

/(y) may be written as

/(y)= -£—카辭一 ［、꽈。%ri丫)了狀

+ 加明) 0［砂*히 Y)E 亦｝. (24)

According to Figure 2, 느小的(키丫) is a slowly varying function 
of y and the second term in Eq. (24) may be neglected com­
paring to the first term. Since 一(가%代丫)/。丫) is the torque, 
the above equation tells us that, the bigger the torque is, 
the bigger the classical angular momentum function is, con­
forming to the common sense. Classical angular momentum 
function shown in Figure 1 tells us that the maximum torque 
occurs at angles around 60°, where anisotropy of the poten­
tial is the biggest.

Besides that, two graphs are similar in that 7(y) equal ze­
ros at 0 and 90° and have maxima around 60°. Figure 1 
also shows the graphs of LA(丫)1 vs. y. A(y) changes sign at 
传73° for 么=3.044 a.u. while at y$67° for 5.044 a.u.. 
Because of this difference in angles of sign changes, the 
maximum of /(y) almost coincides with the second maximum 
of i4(y) for 3.044 a.u. while it lies more 이。se to the zero 
of X(y) for 么=5.044 a.u„ Therefore, whether binodal struc­
tures are shown up or not is determined by the relative posi­

tion of the zero of and the maximum of /(y).
Next let us examine what brings about the differences 

in values of angle y where magnitudes of 厶(丫)are equal 
to zeros. A(y)is given by Eq. 18 and its magnitude is deter­
mined by the behaviors of three functions, quasi-bound state 
wavefunctions e词R，y), continuum wavefunctions ^I0S(Z?|y) 
and ［치〃汐丄Two graphs, 弑Y)and 丫小治(끼 ?)vs. R and 
y when 3.044 a.u, are shown in Figure 2. Corresponding 
graphs for 5.044 a.u. are similar to those for re—3.044 
a.u. and are not shown. Figure 3 shows ［치〃弘丄=々 阪 both 
cases. The figure shows that 〃弘丄=左 changes its sign 
at y around 57° in case of ^=5.044 a.u. while at near 68° 
in case of r?=3.044 a.u.. The reason why the angle of sign 
change is smaller in the former may be ascribed to the rela­
tively larger values of re in that case.

In order to understand this, let us first understand why 
and how the sign of the torque changes as a function of 
angle v. In order to be more specific, let us choose the value 
of R as 2.5 A. The other choice of R may give similar results. 
At J?=2.5 A and y=90°( the distances between A and each 
of atoms of B2 are smaller than 3.5-3.6 A where the minima 
of Morse potentials take place when the intermolecular poten­
tial parameters are given by Table 1. Then the increase 
of the diatomic distance r makes the distances between A 
and B2 larger and closer to 3.5-3.6 A and makes the magni­
tudes of intermolecular potential smaller. Since the magni­
tude of intermolecular potential becomes smaller as r increas­
es, the sign of ［。!7次］「=左 is negative. But the increase 
of diatomic distance r does not always lead to the increase 
of the distance between A and B2. At y smaller than a cos(r/2 
R), the increase of r leads to the decrease of the distance 
between A and B2 and thus increase the magnitude of the
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Table 1. Values of potential parameters used in this paper

(a) Reduced mass between A and B2 
m = 6756.8 a.u.
(b) Morse potential parameter 
Dab-0.0034 eV DCm = 0.00195 eV
aAB= 1.0 a.u.-1 CLcm = 1.0 3.U.*1
RM"=6.82 a.u.
(c) van der Waals potential parameter
C(5o=O.75 eV (a.u.)-6
€62=0.119 eV (a.u.)~6
C8o=L58 eV (a.u.)-8
C8a —0.8 eV (a.u.)-8
어) Diatomic m시ecular parameters

Rq歆=6.65 a.u.

(D< 0.0162 eV
B 0.01758 meV
re 3.044 a.u.
M 32576.6 a.u.

intermolecular potential. The magnitude of angle y of sign 
change, then, becomes smaller as r becomes larger.

The momentum gap law1 can be understood from the very 
form of X(y). In Eq. 18, as the relative energy becomes big­
ger, W"x(끼 y) oscillates more and then the integral will be­
come smaller.

Analysis of rotational state distribution 
by MQDT

Brief summary of MQDT. Infinite order sudden ap­
proximation decouples the motions among different angles 
y and allows us to treat the motion along the dissociation 
coordinate R as an elastic process. The knowledge on the 
behavior of the elastic phase shift n(Y)as a function of y 
and the application of the semiclassical theory by Ford and 
Wheeler9 to the Golden rule like expression for the partial 
photodissociation cross section enable us to understand the 
predissociation dynamics by a sort of reflection principle. 
Though IOS approximation is a powerful tool for the purpose 
of interpretation of the predissociation dynamics, it has sev­
eral defects, as mentioned in Section 1.

MQDT has no such defects as IOS has. It is in principle 
as exact as close-coupling method is. Its interpretational pow­
er surpasses that of IOS approximation in many respects. 
But they share the same principle. Namely, they realize, at 
least implicitly, that most photodissociation dynamics occur 
at inner or short-range region. The IOS wavefunction obtain­
ed by solving Eq. (13) at fixed y may be considered as chan­
nel wavefunctions at the short-range.

Since MQDT was described elsewhere, let us summarize 
only r이evant stuff here. In MQDT, coordinates R along 
which fragmentation takes place are divided into two regions 
R^Ro and R>R0. The m가ching radius RG where log deriva­
tives of the solutions at the inner and outer regions coincide, 
is usually taken so that all inelastic processes are included 
in the inner region. In the outer space, motions in the differ­
ent channel states are decoupled. If standing wave channel 
basis functions % are considered, their radial wave func­

tions denoted by x扩(R) for the i ch츄nnel state 

w,，=Ze；®)x，,，(R), (25)
I

obey the ordinary second order differential equations and 
are given as linear combinations of regular and irregular 
solutions

'匕，(R,3)= Z0,(3)［伸RZR。, (26) 
I

wheredenotes collectively all the coordinates but R and 
K扩 is the real symmetric matrix which differs from the usual 
K matrix in that its indices i and f run over not only open 
but also closed channels. The eigenvalues of K matrix 
are conveniently parameterized as nga where 卩a (or npa) are 
called eigenquantum defects (or eigenphaseshifts).11 If we 
denote the matrix made of eigenvectors of K as U, energy 
normalized short-range eigenchannel basis functions are giv­
en by

나% = 扁 COS n|Ja
1

= 쟈la一务(&)sin npal (27)
I

and are not suitable for the description of the asymp­
totic region. We may now consider eigenchannel basis func­
tions % at the asymptotic region, which are eigenvectors 
of S matrix or K matrix at the asymptotic region. Wp may 
be obtained as superpositions of %

叩. (28)
a

In order to satisfy boundary conditions at the asymptotic 
region, Aap should satisfy the following equations

^tAasin(Pi + njiaMap=0, i e closed, (29) 
a

〉Ca IZhCOS TT^a^ap jT^pCOSJITpi

fZaSinnfJai4.jp = TipsinTTTp, i e open. (30)

satisfying the incoming wave boundary conditions, are 
obtained as linear combinations of %

旷妃2瓦7%, (31)
a

with

zf福-，呻△阮 (32)

Instead of Aa~^, it may be more convenient to use 
which are defined as

乱祯一孕加厂‘呻皿. (33)

Transition dipole moments D~(i) are expressed as a linear 
combination of energy insensitive transition moments Da= 
(Yalpl^gr) to the short-range eigenchannels %:

|。-(叫=|£8「©이. (34)
a

MQDT version of Golden-rule like formula. Let us 
now analyze Eq. (34). From the outset, we anticipate that 
values of △诵 will be larger as a and 0 channel wave func­
tions resemble V by Planck-Condon principle. Calculation

fZaSinnfJai4.jp
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0.0131B 0.01319 0.0132 0.01321 0.01322 0.01323

energy (eV)

Figure 4. Eigenquantum defects 卩a and calculated around 
the resonance energy 0.0132026 eV with 12 channels (6 open, 
6 closed) and with r;=3.044 a.u. are shown in the first graph. 
rp are drawn by solid lines while 出 are drawn by dashed lines. 
The second graph shows times delayed by resonances for each
eigenchannel p.
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Figure 5. Eigenquantum defects 卩a and rp calculated around 
the resonance energy 0.01353 eV with 12 channels (6 open, 6 
이osed) and with 5.044 a.u. are shown in the first graph. rp 
are shown by solid lines while 出 are shown by dashed lines. 
The second graph shows times delayed by resonances for each 
eigenchannel p.
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Agure 6. Short-range channel basis functions Ta(E) when r(= 
3.044 a.u„ 

shows that △邱 for a= 1 and 7, i.e. An, Ai7f A77, dominate 
over other △邱 when ^=3.044 a.u. and 12 channel with 6 
open and 6 closed are included. Their variations as functions 
of energy follow Lorentzian shapes and their magnitudes are 
close together. Also values of |ju for a= 1 and 7 channels 
are close together. This means that frame transformation 
matrices have comparable absolute magnitudes for two 
사血m이s a=l and 7. By Eq. (33),will have similar 
magnitudes for a—1 and 7. Then D~(i) may be approximated 
as

Z尸农厂叨冷(35) 

indicating that final state distributions of photofragments 
only depend on and not on Da (or on the initial state 
WQ. Since has to do only with the final state, transition 
dipole moments Z)_(1) do not depend on the initial state. Final 
state distributions were found to have the same characteris­
tics in the Golden-rule like formula in configuration interac­
tion theory. The fact that transition dipole moments D~(i) 
are approximately separable in and Da forms the 
MQDT version of Golden-rule like expression in configura­
tion interaction theory. Before discussing on the structure 
of let us examine what are the characteristics of % 
when a=l and 7.

Characteristics and properties of short-range 
wavefunctions. % are obtained by linear combinations 
of ¥ given as Eq, (27), which are in turn obtained by apply­
ing the boundary condition (26) on the close coupling equa­
tions. Or,

%=2*皿讷 COS npa

— <刀=1|¥(1> +V刀=이 Wa>, (36)

if vib-rotational quantum numbers \nj\ are explicitly shown 
for i in Eq, (27). Figure 6 and 7 shows m = 1 portion of 乎
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（이乎 a）

Figure 7. Short-range channel basis functions Wa(E) when re— 
5.044 a.u..

Table 2. Squares of the moduli of expansion coefficients of 
angle functions in terms of spherical harmonics

j 0 n/10 n/5 3n/10 2n/5 n/2

0 1.00 1.00 1.00 1.00 1.00 1.00
2 5.00 3.67 1.16 0.00 0.64 1.25
4 9.00 2.85 0.38 1.43 0.03 1.27
6 13.00 0.52 2.11 0.52 0.28 1.27
8 17.00 0.29 0.07 0.56 1.07 1.27

10 21.00 2.53 1.69 1.41 1.30 1.27

ie. <n = l|^a>, in R and y space for re = 3.044 and 5.044 
a.u., respectively. The shape of the remaining <w = 0|%> 
is similar to that for m = 1 except for having more oscillations 
in R as the kinetic energy of the motion along R is larger. 
Figure 6 and 7 show clearly that Ya have magnitudes around 
some particular angles y. This may be viewed as a quantum 
mechanical basis of the IOS approximation. The a=l and 
7 channel basis functions 驱a have their most magnitudes 
around y=90°. This rationalization of % as the quantum 
mechanical basis of IOS approximation is already given in 
Ref. 6. Let us consider the geometrical implication of angle 
functions. If the angle function 业 is of a Dirac type, having 
values only at the particular angle and if we consider 
a photodissociation process taking place along the eigenchan­
nel 蠻a, then the final rotational state distribution Pj is given 
by 1珞(丫0,0)|2, Table 2 shows the distributions Pj correspond­
ing to Yo=0，n/10, n/5, 3n/10, 2n/5, n/2. If the number of 
channels participating in the photodissociation are known, 
the localized angles corresponding to \Ka can be obtained 
by assuming that angles are evenly distributed in the inter­
val [0, n/2]. The angles shown in Table 2 correspond to 

6 channel case. The reason why magnitudes of expansion 
coefficients shown in Table 2 do not decrease as j increases 
can be found in the uncertainty relation A/AOTi. The latter 
relation tells us that A;'-^oo when A0-*O. Since angle func­
tions are not sharply localized in angle, the value of A; 
should be finite. For re=3.044 a.u. case, Figure 6 shows that 
A9—n/10f which indicates

Approximations on Ba-0) and cancellation between 
them. Then B；製 may be approximated as

Bi 一(꺼:츠以次问 △“ + U”減町

务5农刎d7+ %*时(37)

Since I成 i and U心 are the frame transformation matrices 
between the angle function localized around y=90° and the 
spherical harmonics *)(y, 0), they may have similar values, 
Unj, 1 — IY=n/2> = Y；o(n/2, 0). Then 8「어" oc U心. The
probability Pj of finding the photofragment having the rota­
tional quantum number j might then be proportional to

当=口血/2)了=\/砂寸그川 . (38)

Actual calculation yields the final rotational distribution of 
photofragment different from the above prediction. This de­
rives from the fact that though 如 and Un),7 have similar 
magnitudes as asserted above, their signs are not the same 
in order for them to be orthonormal as imposed by the uni­
tarity of U. In order to satisfy the orthogonality,

-----Unf (39)

The reason why U„j,a for a=l and 7 have opposite signs 
for m = 0 (open) while they have same signs for n — l(closed) 
is that the energy of the open channel wavefunction is higher 
than that of the closed channel wavefunction. Because of 
this cancellation, the final state distributions of photofrag­
ments depend sensitively on the small terms of Unj,a. In other 
terms, angle functions whose values are localized in different 
angles from 90° also contribute to the photodissociation dy­
namics. In case of 12 channel and 3.044 a.u., two major 
terms almost cancel each other, but the uncancelled part 
is still big enough to form the envelope of the major shape 
of the final state distribution. The fast oscillating part like 
the binodal structure is the result of the remaining small 
terms. For example, in the binodal structure obtained for 
4=3.044 a.u., two peaks are located at ; = 0 and 6. The 
second peak located at j=6, owing to which the distribution 
is tagged binodal, comes from the contribution from a=6. 
This can be confirmed like this. First, the final state distri­
bution obtained by including two major terms a=l and 7 
is the monotonically decreasing function of j as shown in 
Figure 3. Thus the contributions from the two alone can 
not make the second peak. We found that the second peak 
is obtained by including a=6 term. The a=6 term correspo­
nds to the angle function localized around y-^n/5 (36°) as 
can be seen in Figure 6 and 7. Figure 3 shows that Pj= |1侦(丫, 

0)|2 has a peak at j=6. Rough but easier way of finding 
Pj for a= 1 and 6 is to use Table 2 instead of Figure 3.

Causes and implications of cancellation. In the 
above, if the cancellation does not take place, photodissocia­
tion rate would be more than 30 times larger than that with 
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cancellation. Knowing the cause of cancellation may help us 
find out systems with much greater photodissociation rates 
and may thus be important. Let us thus examine more on 
this cancellation. Cancellation occurs for two short-range 
channels, say ai and a2 channels whose eigenphases 끼如 (or 
eigenquantum defects 卩=are almost equal. Such channels 
are a=l and 7 for 乙=3.044 a.u. and a=6 and 8 for re = 5.044 
a.u. The designation of channel numbers for a is shown in 
Figures. 4, 5, 6, and 7, Figure 4 옹hows that they are almost 
equal in the neighborhood of resonance energies. As already 
mentioned above, these two a's are angle functions localized 
around y=n/2. Being angle functions implies that in %, mo­
tions in y and r are decoupled and 也 may be approximated 
as products of wavefunctions of vibrational, rotational, and 
translational motions.

nPa

= £占皿疗:허‘”"仪)1扇海 지板 (40)

Since 仙网 has an asymptotic form of &占四 
K/m it can be written in the form:

X疗皈(R) = ZU邳脚(R)U 如” (41)
p

where g)(Z?) strictly depends on n'f but such dependence 
maybe ignored if we remind that a channel is defined in 
the short-range where the magnitude of the potential energy 
is so large that the differences in the kinetic energies for 
different (鈴 了)'s may be neglected. By substituting this trans­
formation,

나‘球(£占@孔心d) toa(2?)cos nPa

=<I>aWa COS 지如 (42)

where the approximation enters when the dependence of 
(MR) on («7)is ignored. If we assume that <珈 = 이項%> 

and <m —l|^a> have the same angle dependencies, ort they 
are localized in the same angle, then the angular part can 
be separated out from «匕：

q>y Z®〃【沽，心3。|0>+3〈끼 1>)2丫枱, 0)玲% (43) 
J

»丫，,0(¥，°)1如、1 is just the angle function we 응aid repeatedly 
before and might be denoted by 8(y—yQ) if it is a Dirac 
type function. Actually it is not the type of a Dirac function 
and has a distribution in y. Configuration interaction theory 
tells us that, in the neighborhood of a resonance energy, 
only one type of continuum wave functions (or open channel 
wavefunctions) can inteact with a discrete state consisting 
of only closed channel wavefunctions. Since the discrete state 
wavefunction in the current system of A-B2 van der Waals 
molecule is localized around y=n/2, a continuum wavefunc­
tion localized in y=n/2 can only interact with the discrete 
state. The mixing coefficients between discrete and conti­
nuum wavefunctions vary rapidly in the neighborhood of a 
resonance energy. Since % is defined from origin up to 
R=R° and the rapid variations of mixing coefficients can 
0미y occur when boundary conditions at R—g are applied, 
the mixing coefficients in Eq. (43) may not vary rapidly as 
in configuration interaction theory. Numerical calculation 
shows that mixing coefficients a and b are almost equal. 
The reason why they are almost equal around resonance 

is not answered in the current work and remains to be ex­
plored. Almost equal mixing between the discrete and the 
continuum wavefunction implies that two pa corresponding 
to two mixed states should be almost equal.也 correspond­
ing to them then take the following form:

[ (〈시0> +。，11>)£，匕，软 f。】" a =1(6) and
-_ I =3.044 (5.044) a.u.,
a-1 (〈키0> —〈시for a = 7(8) and for

I ^=3.044 (5.044) a.u.. (44)

Eq. (44) tells us that, in 吼 localized at n/2, vibrational mo­
tion of B2 is also localized either to the left or to the right 
end of B2. The fact that two % are mirror images of each 
other with respect to n ensures that they have almost 
identical phase shifts. Thus two 飪 localized at y=n/2 corre­
spond to wavefunctions whose vibrational motions are locali­
zed at the left and right ends of B2. Photodissociation pro­
cesses along two Y”，which are much larger than the remain­
ing processes, interfere destructively as we saw above. Whe­
ther this cancellation is due to the homonuclearity of B2 
is remained to be investigated Ethere are some experiments 
where A-BC system has a much broader spectral width (fas­
ter predissociation) than that for A-B2].1 Figure 1 tells us 
that similar cancellation takes place in the IOS approxima­
tion, due to the zero of at 90°. Since A(y) is zero by 
symmetry with respect to the change of y into 90°-y at 90°, 
we may expect no such cancellation for the A-BC system. 
It is an open question, at the present stage, whether two 
types of cancellation is identical in essence. The further dis­
cussion on this topic is beyond the scope of this paper.

Different interference formula of Ba~w shorn of 
cancellation. In the IOS analysis, such cancellation is al­
ready built in _A(y)and we can concentrate on the small 
terms remaining a仕er cancellation. Similarly, we can also 
build in the cancellation in the MQDT analysis. Eq. (30) 
shows us that the summation which causes cancellation in 

yields Tl(^,JTZp. Numerical study confirms that 
cancellation is done inThen instead of using Eq. 
(33) to calculate the following equation

3「(，>=27，£"呼0, (45)
p

can be used. Eq. (45) explores the effect of interferences 
among eigenchannels p in the asymptotic region on 8<成 

in comparison with Eq. (33) which explores the effect of 
interferences among short-range eigenchannels a on Ba_(0. 
The extent of the contribution of tach eigenchannel p may 
be assessed by the time delayed of each eigenchannel p. 
Intuitively, more coupling and more contribution will be ex­
pected for the eigenchannel p where fragments spend more 
time and are delayed more in coming out of the reaction 
zone. The amount of time delayed can be estimated by exa­
mining the difference between values of short-range eigen­
quantum defects, namely 曲一 where 心가以 and no other 
eigenquantum defect lies between them. This argument is 
based on the following general properties of tp. The rp be­
comes 肉 at off-resonance. Time delayed is proportional to 
the energy derivative of rp. If the time delayed is caused 
by a quasi bound state, it is positive since the quasi bound 
state will grab photofragments temporally. Therefore, rp al­
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ways increases as a function of energy in the neighborhood 
of resonance energy. At off resonance, it should approach 
one of 临 Since there is no symmetry that prevents eigen- 
channels p from interacting each other, rp starts from one 
of 卩q and it increases dramatically in the neighborhood of 
resonance energy and then it approaches next higher 出“ 

If we restrict the values of rp in the range of [ — 0.5, 0.5], 
then when the value of rp reaches 0.5, its value will shift 
by minus one and then it will increase to approach the lo­
west 卩世 This behavior confirm to the general theorem of 
eigenquantum defect sum £必 found by Hazi.12 The theorem 
says that eigenquantum defect (eigenphase) sum undergoes 
a change by 1 (n) in the neighborhood of resonance energy. 
The described properties of rp is nicely shown in Figure
4.

According to the above argument, a=3 channel corres­
ponding to the angle function which is localized around y= 
54° feels the largest coupling potential for re=3.044 a.u. For 
re = 5.044 a.u., Figure 5 shows that the corresponding channel 
is a=4 channel for which the angle function is localized 
around 丫=72°. Thus the largest contribution to the photodi­
ssociation comes from the smaller angle for rP=3.044 a.u. 
than that for 儿=5.044 a.u.. As we said before, the largest 
torque occurs around 丫=60气 This may be the cause of the 
binodal structure found for re = 3.044 a.u..

Conclusion and Discussion

In this work, we focused on the setup of the tools for 
the analysis of final rotational state distribution. We found 
that a sort of reflection principle can also be applied to find 
out the final rotational state distributions for indirect photo­
dissociation processes as in case of direct photodissociation. 
The analysis is made by first applying Golden-rule like ex­
pression to the partial photodissociation cross sections and 
then by applying IOS approximation to the continuum wave 
functions in Golden-r나e expressions. Applying semiclassical 
approximation then gives the formula for reflection principle. 
Here 4(y) which is obtained by integrating the product of 
quasi-bound state, 차'/#, and ^10S(7?|y), is reflected into 나le 
mirror of the classical angular momentum function, instead 
of the wavefunction before light absorption. The magnitude 
of _A(y)is the measure of the vibrotational channel coupling 
strength which brings about the dissociation of van der 
Waals molecule. The torque dV/d7 which is felt by the diato­
mic photofragment in the decomposition along the fixed 
angle y determines the angular momentum with which the 
diatomic fragment will rotate after dissociation. Figure 1 
exhibits the rotational reflection principle diagrammatically.

Setting up the tools of analysis by MQDT is more difficult 
than that by IOS. Instead of assuming the presence of the 
quasi bound state wavefunctions, it relies only on the raw 
concepts like the boundary conditions on channel wavefunc­
tions and couplings among channels in order to explain the 
resonance phenomena. The 마rength of MQDT is in the full 
utilization of the energy sensitive- and insensitive-ness of 
the dynamic quantities. Such utilization is easily done by 
making use of the fact that the dynamic coupling occurs 
at the short-range region, RvR, where potential energy is 
highly negative and photon energy variation is much smaller 

than the modulus of the potential. Thus in MQDT, transition 
dipole moments are analyzed in terms of those transition 
dipole moment Da corresponding to the excitation to 史.

Examination of the short range eigenchannel basis func­
tions reveals that they are angle functions, i.e. they are loca­
lized around some angle. Two of the angle functions are 
found to be localized around y—90°. According to configura­
tion interaction theory, they correspond to the wavefunctions 
resulting from the configuration interaction of a quasi bound 
wavefunction and as described in Ref. 6. Two are 
found to be not only angularly localized functions in 丫=90° 
but also motions along r are also localized at either one 
of ends of B2. Photodissociation processes along two paths 
corresponding to two a's dominate over other photodissocia­
tion processes but cancel each other. This cancellation causes 
photodissociation to depend sensitively on the interaction 
potential at other angles than y—90°. Part of potential sur­
face where much larger torque exists can now play an impor­
tant role in photodissociation. MQDT also enables us to see 
which processes play important roles after cancellation. This 
is possible by examining the interference in the eigenchan- 
n이s at asymptotic region in The & vs. E graph and 
the rp vs. E graph then tell us which eigenchannels are the 
important contributors to photodissociation.

Since the purpose of this paper is to setup the tools for 
the analysis of photodissociation process in the neighborhood 
of resonance region, we have not examine the effects of he- 
terogenuity of diatomic molecules, reduced masses between 
A and B2, coupling strength and so on on photodissociation. 
Studies on such effects might be valuable if we take the 
real system. Application of the analytic methods developed 
here to real systems are remained to be explored.
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Theoretical studies of the effect of the nonleaving group (RY) on the breakdown mechanism of the tetrahedral anionic 
intermediate, T~, formed by the addition of a less basic phenoxide nucleophile (X) to phenyl benzoates with a more 
basic phenoxide leaving group (Z) have been carried out using the PM3 MO method. The identity acyl transfer 
reactions (X=Z) are facilitated by an elytron-withdrawing RY whereas they are inhibited by an electron-donating 
RY group. The results of non-identity acyl transfer reactions indicate that a more electron-donating RY group leads 
to a greater lowering of the hi응her barrier, TS2, with a greater degree of bond cleavage, and a greater negative 
charge development on the phenoxide oxygen atom, whereas the opposite is true for a more electron-withdrawing 
RY 응roup, i.e., leads to a greater lowering of the lower barrier, TS1. The results provide theoretical basis for the 
signs of Pxy(>0) and pyz(<0) observations.

Introduction

Two distinct reaction pathways have been suggested for 
nucleophilic substitution at a carbonyl carbon.1 One step con­
certed mechanism proceeds through a tetrahedral transition 
state (TS),2 whereas two-step addition-elimination processes 
occur via a tetrahedral intermediate, I.3 In the step-wise 
pathway, a mechanistic change-over can take place from rate­
limiting breakdown to fonnation of the intermediate depen­
ding on (i) relative basicities (pKa) of the nucleophile (NX) 
and nucleofuge (LZ) and (ii) electron-donating or electron­
withdrawing power of the nonleaving group (RY).3

O-

XN-C-LZ

Ay

In a previous work4 we examined theoretically the effects 
of relative basicities (or proton affinities) of the nucleophile 
and nucleofuge on the acyl transfer mechanism using gas­
phase reactions of a series of substituted phenoxide anions 
(NX= "OCeHiX) with meta-nitro, para-nitro and 3,4-dinitro 
phenyl formates (LZ=OC&H4Z with Z—W-NO2, />-NOa and 
3,4-(NO2)2 for RY—H). The results suggested that whichever 
is the lower basicity phenoxide anion the TS level involving 
partial bond cleavage of that lower basicity phenoxide gives

Determination of Reactivity by MO theory. Part 94. Part 93, 
Lim, W. M.; Kim, W. K.; Jung, H. J.; Lee, L Bull. Korean Chem. 
Ssc, 1995, 16, 252.

the lower TS. Thus the depression of the TS1 level due

（广 （广
xc시) tLocgz

RY

XC6H4O—d>-OC6H^Z

RY

TS1 TS2

to a decrease in the basicity of the phenoxide anion nucleo­
phile with a constant nucleofuge may lead to a lower TS1 
level than TS2 and the mechanistic change from rate-limiting 
formation to breakdown of the tetrahedral intermediate, T-, 
can take place. It was also found that solvation by one water 
molecule leads to a greater degree of depression of the sec­
ond barrier, TS2, than that of TS1 and the reaction is ex­
pected to change to rate-limiting formation of T- (or to a 
concerted process when T_ becomes extremely unstable) as 
experimentally observed in solution for all the compounds 
studied.5

On the other hand, it has been shown experimentally that 
as the electron withdrawing power of the nonleaving group 
in the addition intermediate, RY, is decreased, or conversely 
as the electron donating power of RY is increased, the higher 
basicity phenoxide group expulsion is favored i.e.t the TS2 
is stabilized more than TS1 if pKa(Z)>pKaQQ.4

Since the effect of RY on the degree of bond cleavage 
in TS1 (di*) and TS2 (rf2*) is important in determinig the 
sign of pxy and pyz in Eq (1),臨"which in turn is important 
as a mechanistic criteria, we decided to study the effect of 
RY on the mechnism of the acyl transfer reactions involving 
a tetrahedral intermediate in a greater detail.


