• Title/Summary/Keyword: depth dose distribution

Search Result 160, Processing Time 0.026 seconds

A Study of a Non-commercial 3D Planning System, Plunc for Clinical Applicability (비 상업용 3차원 치료계획시스템인 Plunc의 임상적용 가능성에 대한 연구)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.71-79
    • /
    • 1998
  • Purpose : The objective of this study is to introduce our installation of a non-commercial 3D Planning system, Plunc and confirm it's clinical applicability in various treatment situations. Materials and Methods : We obtained source codes of Plunc, offered by University of North Carolina and installed them on a Pentium Pro 200MHz (128MB RAM, Millenium VGA) with Linux operating system. To examine accuracy of dose distributions calculated by Plunc, we input beam data of 6MV Photon of our linear accelerator(Siemens MXE 6740) including tissue-maximum ratio, scatter-maximum ratio, attenuation coefficients and shapes of wedge filters. After then, we compared values of dose distributions(Percent depth dose; PDD, dose profiles with and without wedge filters, oblique incident beam, and dose distributions under air-gap) calculated by Plunc with measured values. Results : Plunc operated in almost real time except spending about 10 seconds in full volume dose distribution and dose-volume histogram(DVH) on the PC described above. As compared with measurements for irradiations of 90-cm 550 and 10-cm depth isocenter, the PDD curves calculated by Plunc did not exceed $1\%$ of inaccuracies except buildup region. For dose profiles with and without wedge filter, the calculated ones are accurate within $2\%$ except low-dose region outside irradiations where Plunc showed $5\%$ of dose reduction. For the oblique incident beam, it showed a good agreement except low dose region below $30\%$ of isocenter dose. In the case of dose distribution under air-gap, there was $5\%$ errors of the central-axis dose. Conclusion : By comparing photon dose calculations using the Plunc with measurements, we confirmed that Plunc showed acceptable accuracies about $2-5\%$ in typical treatment situations which was comparable to commercial planning systems using correction-based a1gorithms. Plunc does not have a function for electron beam planning up to the present. However, it is possible to implement electron dose calculation modules or more accurate photon dose calculation into the Plunc system. Plunc is shown to be useful to clear many limitations of 2D planning systems in clinics where a commercial 3D planning system is not available.

  • PDF

Clinical Implications of High Definition Multileaf Collimator (HDMLC) Dosimetric Leaf Gap (DLG) Variations

  • Chang, Kyung Hwan;Ji, Yunseo;Kwak, Jungwon;Kim, Sung Woo;Jeong, Chiyoung;Cho, Byungchul;Park, Jin-hong;Yoon, Sang Min;Ahn, Seung Do;Lee, Sang-wook
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.111-116
    • /
    • 2016
  • This study is to evaluate the dosimetric impact of dosimetric leaf gap (DLG) and transmission factor (TF) at different measurement depths and field sizes for high definition multileaf collimator (HD MLC). Consequently, its clinical implication on dose calculation of treatment planning system was also investigated for pancreas stereotactic body radiation therapy (SBRT). The TF and DLG were measured at various depths (5, 8, 10, 12, and 15 cm) and field sizes ($6{\times}6$, $8{\times}8$, and $10{\times}10cm^2$) for various energies (6 MV, 6 MV FFF, 10 MV, 10 MV flattening filter free [FFF], and 15 MV). Fifteen pancreatic SBRT cases were enrolled in the study. For each case, the dose distribution was recomputed using a reconfigured beam model of which TF and DLG was the closest to the patient geometry, and then compared to the original plan using the results of dose-volume histograms (DVH). For 10 MV FFF photon beam, its maximum difference between 2 cm and 15 cm was within 0.9% and it is increased by 0.05% from $6{\times}6cm^2$ to $10{\times}10cm^2$ for depth of 15 cm. For 10 MV FFF photon beam, the difference in DLG between the depth of 5 cm and 15 cm is within 0.005 cm for all field sizes and its maximum difference between field size of $6{\times}6cm^2$ and $10{\times}10cm^2$ is 0.0025 cm at depth of 8 cm. TF and DLG values were dependent on the depth and field size. However, the dosimetric difference between the original and recomputed doses were found to be within an acceptable range (<0.5%). In conclusion, current beam modeling using single TF and DLG values is enough for accurate dose calculation.

Radiotherapy Treatment Planning with Computed Tomography in Malignant Tumors of the Chest-Comparison of various techniques (흉부악성종양(胸部惡性腫瘍)의 방사선치료계획(放射線治療計劃)에 있어서 전산화단층촬영(電算花斷層撮影)의 이용(利用)에 관한 연구(硏究))

  • Lee, Joo Hyuk;Koh, Kyoung Hwan;Ha, Sung Whan;Han, Man Chung
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.55-60
    • /
    • 1983
  • To evaluate the usefulness of computed tomography (CT) in radiotherapy treatment planning in malignant tumors of thoracic cage, the computer generated dose distributions were compared between plans based on conventional studies and those based on CT scan. 22 cases of thoracic malignancies, 15 lung cancers and 7 esophageal cancers, diagnosed and treated in Department of Therapeutic Radiology of Seoul National University Hospital from September, 1982 to April, 1983, were analyzed. In lung cancers, dose distribution in plans using AP, PA parallel opposing ports with posterior spinal cord block and in plans using box technique both based on conventional studies were compared with dose distribution using AP, PA and two oblique ports based on CT scan. In esophageal cancers, dose distribution in plans based on conventional studies and those based on CT scans, both using 3 port technique were compared. The results are as follows: 1. Parallel opposing field technique were inadequate in all cases of lung cancers, as portion of primary tumor in 13 of 15 cases and portion of mediastinum in all were out of high dose volume. 2. Box technique was inadequate in 5 of 15 lung cancers as portion of primary tumor was not covered and in every case the irradiated normal lung volume was quite large. 3. Plans based on CT scan were superior to those based on conventional studies as tumor was demarcated better with CT and so complete coverage of tumor and preservation of more normal lung volume could be made. 4. In 1 case of lung cancer, tumor localization was nearly impossible with conventional studies, but after CT scan tumor was more clearly defined and localized. 5. In 1 of 7 esophageal cancers, the radiation volume should be increased for marginal coverage after CT scan. 6. Depth dose correction for tissue inhomogeneity is possible with CT, and exact tumor dose can be calculated. As a result radiotherapy treatment planning based on CT scan has a pteat advantage over that based on conventional studies.

  • PDF

The Usability Evaluation Half Beam Radiation Treatment Technique on the Esophageal Cancer (식도암 환자에서의 Half Beam 치료법의 유용성 평가)

  • Park, Hochoon;Kim, Youngjae;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.287-293
    • /
    • 2015
  • Because of esophageal cancer has the long length of the lesion and also inhomogeneous in depth. So, the radiation dose distribution was inhomogeneous in radiation therapy. To overcomes the dose distribution uniformity using half beam method. Patient's CT image was used radiation treatment planning. We used two planning methods that one is the using normal beam and another is using half beam. Than comparing the two radiotherapy planning using target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues - heart, spinal cord, lung -. In results, Treatment planning using half beam is little more than normal beam in target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues covering. However, If the patient is not correct position patients may arise a side effect. Thus, the using in Half beam involving the geometrically exact under lung cancer is considered to advantage.

Radiotherapy Treatment Planning using Computed Tomography in Breast Cancer (유방암에서 CT planning를 이용한 치료계획)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 1992
  • Carcimoma of the breast are first frequency malignancy in women in the world. third frequency in Korea. Radiation therapy in breast cancer were treated through opposed tangential fields with photon beam or electron beam. Density within the field and thickness to tumor are very importent factors determining dose distribution in radiation therapy of electron beam. Radiotherapy traetment planning using computed tomography in Breast cancer are able to ideal dose distribution. Authors concluded as following. 6MeV energy of electron beam propered below 1.5cm in chest wall's thickness or internal mammary lymphnode's depth. 9MeV energy of electron beam from 1.5cm to 2.0cm. 12 MeV energy of electron beam from 2.0cm to 2.5cm.

  • PDF

Absorbed Dose from Large Balloon Filled with Liquid Ho-166

  • Joh, Chul-Woo;Park, Chan H.;Lee, Myoung-Hoon;Yoon, Seok-Nam;Kim, Mi-Hwa;Jang, Ji-Sun;Park, Kyung-Bae
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.328-330
    • /
    • 2002
  • Large balloon angio catheter is used for Percutaneous Transluminal Angioplsty(TPA) of the iliac, femoral and renal arteries as well as after Transjugular Intrahepatic portosystemic shunt(TIPS). The use of angioplasty balloon filled with liquid form of radioisotope reduces the rate of restenosis after PTA. The purpose of this study was to evaluate the absorbed dose to the target vessels from various sized large balloon filled with liquid form of Ho-166-DTPA. Four balloons of balloon dilatation catheters evaluated were 5, 6, 8 and 10 mm in diameter. GafChromic film was used for the estimation of the absorbed dose near the surface of the balloon catheters. Absorbed dose rates are plotted in units of Gy/min/GBq/ml as a function of radial distance in mm from the surface of balloon. The absorbed dose rate was 1.1, 1.6, 2.2 and 2.3 Gy/min/GBq/ml at a balloon surface, 0.3, 0.4, 0.5 and 0.6 Gy/min/GBq/ml at 1 mm depth for various balloon diameter 5, 6, 8 and 10 mm in diameter respectively. The study was conducted to estimate the absorbed doses to the vessels from various sized large balloons filled with liquid form of Ho-166-DTPA for clinical trial of radiation therapy after the PTA. The absorbed dose distribution of Ho-166 appeared to be nearly ideal for vascular irradiation since beta range is very short avoiding unnecessary radiation to surrounding normal tissues.

  • PDF

Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer (피부암치료를 위한 전자선 전신피부 치료방법과 선량분포 측정)

  • Chu, Sung-Sil;Loh, John-Jk;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.107-113
    • /
    • 1992
  • Increasing frequency of skin cancer, mycosis fungoides, Kaposi's sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a $0.5\;cm\times90\;cm{\times}180\;cm$ acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  • PDF

Experiment of proof-of-principle on prompt gamma-positron emission tomography (PG-PET) system for in-vivo dose distribution verification in proton therapy

  • Bo-Wi Cheon ;Hyun Cheol Lee;Sei Hwan You;Hee Seo ;Chul Hee Min ;Hyun Joon Choi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2018-2025
    • /
    • 2023
  • In our previous study, we proposed an integrated PG-PET-based imaging method to increase the prediction accuracy for patient dose distributions. The purpose of the present study is to experimentally validate the feasibility of the PG-PET system. Based on the detector geometry optimized in the previous study, we constructed a dual-head PG-PET system consisting of a 16 × 16 GAGG scintillator and KETEK SiPM arrays, BaSO4 reflectors, and an 8 × 8 parallel-hole tungsten collimator. The performance of this system as equipped with a proof of principle, we measured the PG and positron emission (PE) distributions from a 3 × 6 × 10 cm3 PMMA phantom for a 45 MeV proton beam. The measured depth was about 17 mm and the expected depth was 16 mm in the computation simulation under the same conditions as the measurements. In the comparison result, we can find a 1 mm difference between computation simulation and measurement. In this study, our results show the feasibility of the PG-PET system for in-vivo range verification. However, further study should be followed with the consideration of the typical measurement conditions in the clinic application.

Basic Measurements and Dosage Compensation for Total Body Irradiation (전신조사를 위한 선량 측정과 보상)

  • 김진기;권형철;김정수;김부길;추성실
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.25-34
    • /
    • 1992
  • For the TBI with medical linear accelerator(6.10MV), we measured basic data for dosage calculation and designed compensation filters to improve dose uniformity. At the distance of 3.4cm from the source, using the specially designed compensation filters reduced with in ${\pm}$5% for mid-depth dose in the phantom seated with flexion of the legs in the field sige up to 120${\times}$120cm$^2$ for the whole body. In repeated measurements for the dose distribution with humanoid phantom contained paraflin compound, measurement error using the TLD chips were less than ${\pm}$5%.

  • PDF

A STUDY FOR DOSE DISTRIBUTION IN SPENT FUEL STORAGE POOL INDUCED BY NEUTRON AND GAMMA-RAY EMITTED IN SPENT FUELS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • With the reactor operation conditions - 4.3 wt% $^{235}U$ initial enrichment, burn-up 55,000 MWd/MTU, average power 34 MW/MTU for three periods burned time for 539.2 days per period and cooling time for 100 hours after shut down, to set up the condition to determine the minimum height (depth) of spent fuel storage pool to shut off the radiation out of the spent fuel storage pool and to store spent fuels safely, the dose rate on the specific position directed to the surface of spent fuel storage pool induced by the neutron and gamma-ray from spent fuels are evaluated. The length of spent fuel is 381 cm, and as the result of evaluation on each position from the top of spent fuel to the surface of spent fuel storage pool, it is difficult for neutrons from spent fuels to pass through the water layer of maximum 219 cm (600 cm from the floor of spent fuel storage pool) and 419 cm (800 cm from the floor of spent fuel storage pool) for gamma-ray. Therefore, neutron and gamma-ray from spent fuels can pass through below 419 cm (800 cm from the floor) water layer directed to the surface of spent fuel storage pool.