• 제목/요약/키워드: deposition velocity

검색결과 256건 처리시간 0.027초

지표면 Wetness에 따른 오존의 건성침적속도 특성 (The Characteristics of the Dry Deposition Velocity for O3 regarding Surface Wetness)

  • 이화운;김유근;문난경
    • 한국환경과학회지
    • /
    • 제12권4호
    • /
    • pp.393-397
    • /
    • 2003
  • It has been researched the relationship between deposition velocity and factors which could affect the deposition phenomena and deposition velocity also has been estimated fer several land-use types. The typical deposition velocities are complex functions of surface types, atmospheric stabilities, friction velocities, air pollutants and so on. The canopy resistance is major contribution to the model's total resistance for O₃. Canopy wetness is also an important factor to calculate deposition velocity. We considered the canopy wetness as canopy water content(CWC) in our Model. But, it is not easy to observe CWC over each land-use types. In this study, we use CWC observed by EMEFS(CANADA Environment Service, 1988) to examine the influence of CWC in estimation of 03 dry deposition velocity(V/sub d/) in summertime. The value of O₃ V/sub d/ range 0.2 ∼ 0.7 cm s/sup -1/ on dry surface and 0.01 ∼ 0.35 cm s/sup -1/ on wet surface in daytime.

초음파 풍속온도계를 이용한 $SO_2$건성침착속도의 계절변화 특징 (Seasonal Variations of $SO_2$Dry Deposition Velocity Obtained by Sonic Anemometer-Thermometer)

  • 이종범;박세영
    • 한국대기환경학회지
    • /
    • 제14권5호
    • /
    • pp.465-478
    • /
    • 1998
  • In this study, seasonal variations of the dry deposition velocity and deposition flux for the sulfur dioxide were analysed. The field observation was performed during one year (from November 1, 1995 to October 31, 1996) in Chunchon basin. The turbulence data were measured by 3-dimensional sonic anemometer/thermometer, and were estimated by mean meteorological data obtained at two heights (2.5 m and 10 m) of meteorological tower. Also, the estimation methods were evaluated by comparing the turbulence data. The results showed that the estimated dry deposition velocity and turbulence parameter such as uc and sensible heat flux using mean meteorological data were relatively similar to the sonic measurements, but all showed somewhat large differences. The dry deposition velocity was large in summer and small in winter mainly due to canopy resistance (rc). The major factor which affects diurnal variation of the velocity was aerodynamic resistance (rw). The SO2 dry deposition flux was large in winter and small in summer in Chunchon.

  • PDF

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 3: Estimation of Fog Deposition onto Cool-temperate Deciduous Forest by the Inferential Method

  • Katata, Genki;Yamaguchi, Takashi;Sato, Haruna;Watanabe, Yoko;Noguchi, Izumi;Hara, Hiroshi;Nagai, Haruyasu
    • Asian Journal of Atmospheric Environment
    • /
    • 제7권1호
    • /
    • pp.17-24
    • /
    • 2013
  • Fog deposition onto the cool-temperate deciduous forest around Lake Mashu in northern Japan was estimated by the inferential method using the parameterizations of deposition velocity and liquid water content of fog (LWC). Two parameterizations of fog deposition velocity derived from field experiments in Europe and numerical simulations using a detailed multi-layer atmosphere-vegetation-soil model were tested. The empirical function between horizontal visibility (VIS) and LWC was applied to produce hourly LWC as an input data for the inferential method. Weekly mean LWC computed from VIS had a good correlation with LWC sampled by an active string-fog collector. By considering the enhancement of fog deposition due to the edge effect, fog deposition calculated by the inferential method using two parameterizations of deposition velocity agreed with that computed from throughfall data. The results indicated that the inferential method using the current parameterizations of deposition velocity and LWC can provide a rough estimation of water input due to fog deposition onto cool-temperature deciduous forests. Limitations of current parameterizations of deposition velocity related to wind speed, evaporation loss of rain and fog droplets intercepted by tree canopies, and leaf area index were discussed.

웨이퍼 표면상의 입자침착에 관한 수치 시뮬레이션 (Numerical Simulation of Particle Deposition on a Wafer Surface)

  • 명현국;박은성
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2315-2328
    • /
    • 1993
  • The turbulence effect of particle deposition on a horizontal free-standing wafer in a vertical flow has been studied numerically by using the low-Reynolds-number k-.epsilon. turbulence model. For both the upper and lower surfaces of the wafer, predictions are made of the averaged particle deposition velocity and its radial distribution. Thus, it is now possible to obtain local information about the particle deposition on a free-standing wafer. The present result indicates that the particle deposition velocity on the lower surface of wafer is comparable to that on the upper one in the diffusion controlled deposition region in which the particle sizes are smaller than $0.1{\mu}m$. And it is found in this region that, compared to the laminar flow case, the averaged deposition velocity under the turbulent flow is about two times higher, and also that the local deposition velocity at the center of wafer is high equivalent to that the wafer edge.

수직 웨이퍼상의 입자 침착속도의 측정 (Measurement of Particle Deposition Velocity Toward a Vertical Wafer Surface)

  • 배귀남;이춘식;박승오;안강호
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.521-527
    • /
    • 1995
  • The average particle deposition velocity toward a vertical wafer surface in a vertical airflow chamber was measured by a wafer surface scanner(PMS Model SAS-3600). Polystyrene latex(PSL) spheres with diameters between 0.3 and $0.8{\mu}m$ were used. To examine the effect of the airflow velocity on the deposition velocity, experiments were conducted for three vertical airflow velocities ; 20, 30, 50cm/s. Experimental data of particle deposition velocity were compared with those given by prediction model suggested by Liu and Ahn(1987).

  • PDF

전주지역에서 다환방향족 탄화수소의 건식 침적 측정 (Measurement of Dry Deposition of Polycyclic Aromatic Hydrocarbons in Jeoniu)

  • 김형섭;김종국;김영성
    • 한국대기환경학회지
    • /
    • 제23권2호
    • /
    • pp.242-249
    • /
    • 2007
  • Deposition fluxes of polycyclic aromatic hydrocarbons (PAHs) were measured at the Chonbuk National University located in Jeonju between June and November 2002. Fluxes of gaseous and particulate PAHs were separately obtained using a water surface sampler (WSS) and a dry deposition plate (DDP). Most of PAHs were deposited in the gaseous form since the low molecular weight PAHs dominates in the atmosphere. The deposition velocity of particulate PAHs was higher than that of gaseous PAHs when the molecular weight was low, but substantially decreased as the fine particle fraction increased with molecular weight. The deposition velocity was generally higher at high wind speeds. However, increase in the deposition velocity in unstable atmospheric conditions was also observed for gaseous PAHs of intermediate molecular weight.

VAD공정 관련 회전하는 원판으로의 입자 부착 (Particle deposition on a rotating disk in application to vapor deposition process (VAD))

  • 송창걸;황정호
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.61-69
    • /
    • 1998
  • Vapor Axial Deposition (VAD), one of optical fiber preform fabrication processes, is performed by deposition of submicron-size silica particles that are synthesized by combustion of raw chemical materials. In this study, flow field is assumed to be a forced uniform flow perpendicularly impinging on a rotating disk. Similarity solutions obtained in our previous study are utilized to solve the particle transport equation. The particles are approximated to be in a polydisperse state that satisfies a lognormal size distribution. A moment model is used in order to predict distributions of particle number density and size simultaneously. Deposition of the particles on the disk is examined considering convection, Brownian diffusion, thermophoresis, and coagulation with variations of the forced flow velocity and the disk rotating velocity. The deposition rate and the efficiency directly increase as the flow velocity increases, resulting from that the increase of the forced flow velocity causes thinner thermal and diffusion boundary layer thicknesses and thus causes the increase of thermophoretic drift and Brownian diffusion of the particles toward the disk. However, the increase of the disk rotating speed does not result in the direct increase of the deposition rate and the deposition efficiency. Slower flow velocity causes extension of the time scale for coagulation and thus yields larger mean particle size and its geometric standard deviation at the deposition surface. In the case of coagulation starting farther from the deposition surface, coagulation effects increases, resulting in the increase of the particle size and the decrease of the deposition rate at the surface.

가열되는 회전원판으로의 입자 침착 해석 (Analysis on Particle Deposition on a Heated Rotating Disk)

  • 유경훈
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

정전효과를 고려한 반도체 웨이퍼의 입자침착 특성 (Particle Deposition Characteristics with Electrostatic Effect on Semiconductor Wafers)

  • 이건형;채승기;문영준
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.779-785
    • /
    • 2006
  • Particle transport and deposition characteristics on semiconductor wafers inside the chamber were experimentally investigated via a particle generation & deposition system and a wafer surface scanner. Especially the relation between particle size($0.083{\sim}0.495{\mu}m$) and particle deposition velocity with ESA(Electrostatic Attraction) effect was studied. Spot deposition technique with the deposition system using nozzle type outlets of the chamber was newly conducted to derive particle deposition velocity and all experiment results were compared with the previous study and were in a good agreement as well.

  • PDF

지표 부근에서의 대기오염물질 건성 침적속도에 관한 모수화 (A Simulation for Dry Depositon Velocity of Air Pollutants over various surfaces.)

  • 이화운;박종길
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.367-372
    • /
    • 1994
  • A predictive model is demonstrated for gas removal rates from the aklosphere by dw deposition. Typical deposition velocities are complex functions of surface types, atmospheric stabilities, friction velocities, air pollutants, and so on. In this paper we simulated the calculation of dry deposition velocities near the earth surfaces, simultaneously we estimated real dry deposition velocities using the previous simulation. The measurement taken over a deciduous forest by Padro et d.(1988) were used to verify this model. In the comparison of the value of deposition velocity between numerical computation and observation, there are partially overestimations and underestimations between them, but we can speak that they are in a good accordance.

  • PDF