DOI QR코드

DOI QR Code

Aerosol Deposition and Behavior on Leaves in Cool-temperate Deciduous Forests. Part 3: Estimation of Fog Deposition onto Cool-temperate Deciduous Forest by the Inferential Method

  • Katata, Genki (Research Group for Environmental Science, Japan Atomic Energy Agency) ;
  • Yamaguchi, Takashi (Environmental Conservation Division, Hokkaido Research Organization) ;
  • Sato, Haruna (Field Science Center, Tokyo University of Agriculture and Technology) ;
  • Watanabe, Yoko (Field Science Center for Northern Biosphere, Hokkaido University) ;
  • Noguchi, Izumi (Environmental Conservation Division, Hokkaido Research Organization) ;
  • Hara, Hiroshi (Field Science Center, Tokyo University of Agriculture and Technology) ;
  • Nagai, Haruyasu (Research Group for Environmental Science, Japan Atomic Energy Agency)
  • Received : 2012.05.31
  • Accepted : 2012.09.21
  • Published : 2013.03.31

Abstract

Fog deposition onto the cool-temperate deciduous forest around Lake Mashu in northern Japan was estimated by the inferential method using the parameterizations of deposition velocity and liquid water content of fog (LWC). Two parameterizations of fog deposition velocity derived from field experiments in Europe and numerical simulations using a detailed multi-layer atmosphere-vegetation-soil model were tested. The empirical function between horizontal visibility (VIS) and LWC was applied to produce hourly LWC as an input data for the inferential method. Weekly mean LWC computed from VIS had a good correlation with LWC sampled by an active string-fog collector. By considering the enhancement of fog deposition due to the edge effect, fog deposition calculated by the inferential method using two parameterizations of deposition velocity agreed with that computed from throughfall data. The results indicated that the inferential method using the current parameterizations of deposition velocity and LWC can provide a rough estimation of water input due to fog deposition onto cool-temperature deciduous forests. Limitations of current parameterizations of deposition velocity related to wind speed, evaporation loss of rain and fog droplets intercepted by tree canopies, and leaf area index were discussed.

Keywords

References

  1. Aikawa, M., Hiraki, T., Shoga, M., Tamaki, M., Sumitomo, S. (2007) Seven-year trend and the time and seasonal dependence of fog water collected near an industrialized area in Japan. Atmospheric Research 83, 1-9. https://doi.org/10.1016/j.atmosres.2006.01.011
  2. Beswick, K.M., Hargreaves, K.J., Gallagher, M.W., Choularton, T.W., Fowler, D. (1991) Size-resolved measurements of cloud droplet deposition velocity to a forest canopy using an eddy correlation technique. Quarterly Journal Royal Meteorological Society 117, 623-645. https://doi.org/10.1002/qj.49711749910
  3. Bruijnzeel, L.A., Mulligan, M., Scatena, F.N. (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes 25, 465-498. https://doi.org/10.1002/hyp.7974
  4. Erisman, J.W., Pul, A.V., Wyers, P. (1994) Parametrization of surface resistance for the quantification of atmospheric deposition of acidifying pollutants and ozone. Atmospheric Environment 28, 2595-2607. https://doi.org/10.1016/1352-2310(94)90433-2
  5. Erisman, J.W., Draaijers, G.P.J. (1995) Atmospheric deposition in relation to acidification and eutrophication, Studies in Environmental Science, 63, Elsevier, Amsterdam.
  6. Eugster, W., Burkard, R., Holwerda, F., Scatena, F.N., Bruijnzeel, L.A. (2006) Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology 139, 288-306. https://doi.org/10.1016/j.agrformet.2006.07.008
  7. Fowler, D., Morse, A.P., Gallagher, M.W., Choularton, T.W. (1990) Measurements of cloud water deposition on vegetation using a lysimeter and a flux gradient technique. Tellus 42B, 285-293.
  8. Fujinuma, Y., Kawai, T., Atsuya, I., Tanaka, A., Hamada, H., Fukazawa, T., Sakata, K., Minami, N., Imada, K. (2004) Lake Mashu Monitoring databook in GEMS/Water program. In CGER-REPORT-M016-2004: GEMS/Water Lake Mashu Monitoring Data Book (in Japanese).
  9. Gultepe, I., Muller, M.D., Boybeyi, Z. (2006) A new visibility parameterization for warm-fog applications in numerical weather prediction models. Journal of Applied Meteorology and Climatology 45, 1469-1480. https://doi.org/10.1175/JAM2423.1
  10. Hasselrot, B., Grennfelt, P. (1987) Deposition of air pollutants in a wind-exposed forest edge. Water, Air, and Soil Pollution 34, 135-143. https://doi.org/10.1007/BF00184756
  11. Herckes, P., Wendling, R., Sauret, N., Mirabel, P., Wortham, H. (2002) Cloudwater studies at a high elevation site in the Vosges Mountains (France). Environmental Pollution 117, 169-177. https://doi.org/10.1016/S0269-7491(01)00139-7
  12. Herwitz, S.R., Slye, R.E. (1995) Three-dimensional modeling of canopy tree interception of wind-driven rainfall. Journal of Hydrology 168, 205-226. https://doi.org/10.1016/0022-1694(94)02643-P
  13. Hicks, B.B., Baldocchi, D.D., Meyers, T.P., Hosker, R.P., Matt, D.R. (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution 36, 311-330. https://doi.org/10.1007/BF00229675
  14. Holwerda, F., Burkard, R., Eugster, W., Scatena, F.N., Meesters, A.G.C.A., Bruijnzeel, L.A. (2006) Estimating fog deposition at a Puerto Rican elfin cloud forest site: Comparison of the water budget and eddy covariance methods. Hydrological Processes 20, 2669-2692. https://doi.org/10.1002/hyp.6065
  15. Igawa, M., Matsumura, K., Okochi, H. (2002) High frequency and large deposition of acid fog on high elevation forest. Environmental Science and Technology 36, 1-6. https://doi.org/10.1021/es0105358
  16. Katata, G., Nagai, H., Wrzesinsky, T., Klemm, O., Eugster, W., Burkard, R. (2008) Development of a land surface model including cloud water deposition on vegetation. Journal of Applied Meteorology and Climatology 47, 2129-2146. https://doi.org/10.1175/2008JAMC1758.1
  17. Katata, G., Kajino, M., Hiraki, T., Aikawa, M., Kobayashi, T., Nagai, H. (2011) A method for simple and accurate estimation of fog deposition in a mountain forest using a meteorological model. Journal of Geophysical Research 116, D20102. https://doi.org/10.1029/2010JD015552
  18. Klemm, O., Wrzesinsky, T., Scheer, C. (2005) Fog water flux at a canopy top: Direct measurement versus onedimensional model. Atmospheric Environment 39, 5375-5386. https://doi.org/10.1016/j.atmosenv.2005.05.041
  19. Kobayashi, T., Nakagawa, Y., Tamaki, M., Hiraki, T., Aikawa, M., Shoga, M. (1999) Estimation of acid deposition to forest canopies via cloud water by means of through fall measurements and cloud water collection-Measurements in Cryptomeria Japonica stands at Mt. Rokko. Environmental Science 12, 399-411 (in Japanese with English abstract, figures, and tables).
  20. Kunkel, B.A. (1984) Parameterization of droplet terminal velocity and extinction coefficient in fog models. Journal of Applied Meteorology 23, 34-41. https://doi.org/10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2
  21. Lange, C.A., Matschullat, J., Zimmermann, F., Sterzik, G., Wienhaus, O. (2003) Fog frequency and chemical composition of fog water-A relevant contribution to atmospheric deposition in the eastern Erzgebirge, Germany. Atmospheric Environment 37, 3731-3739. https://doi.org/10.1016/S1352-2310(03)00350-9
  22. Lloyd, C.R., Marques, A.D. (1988) Spatial variability of throughfall and stemflow measurements in Amazonian rain forest. Agricultural and Forest Meteorology 42, 63-73. https://doi.org/10.1016/0168-1923(88)90067-6
  23. Lovett, G.M. (1984) Rates and mechanisms of cloud water deposition to a subalpine balsam fir forest. Atmospheric Environment 18, 361-371. https://doi.org/10.1016/0004-6981(84)90110-0
  24. Matsuda, K., Watanabe, I., Wingpud, V., Theramongkol, P., Ohizumi, T. (2006) Deposition velocity of $O_{3}$ and $SO_{2}$ in the dry and wet season above a tropical forest in northern Thailand. Atmospheric Environment 40, 7557- 7564. https://doi.org/10.1016/j.atmosenv.2006.07.003
  25. Mueller, S.F., Joslin Jr., J.D., Wolfe, M.H. (1991) Estimating cloud water deposition to subalpine spruce-fir forests II. Model testing. Atmospheric Environment 25A, 1105-1122.
  26. Seinfeld, J.H., Pandis, S.N. (2006) Atmospheric Chemistry and Physics-From Air Pollution to Climate Change (2nd Ed.), Wiley-Interscience, New York.
  27. Stoelinga, M.T., Warner, T.T. (1999) Nonhydrostatic, mesobeta- scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. Journal of Applied Meteorology 38, 385-404. https://doi.org/10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2
  28. Tago, H., Kimura, H., Kozawa, K., Fujie, K. (2006) Longterm observation of fogwater composition at two mountainous sites in Gunma Prefecture, Japan. Water, Air and Soil Pollution 175, 375-391. https://doi.org/10.1007/s11270-006-9144-8
  29. Vermeulen, A.T., Wyers, G.P., Römer, F.G., Van Leeuwen, N.F.M., Draaijers, G.P.J., Erisman, J.W. (1997) Fog deposition on a coniferous forest in the Netherlands. Atmospheric Environment 31, 375-386. https://doi.org/10.1016/S1352-2310(96)00056-8
  30. Watanabe, K., Honoki, H., Iwai, A., Tomatsu, A., Noritake, K., Miyashita, N., Yamada, K., Yamada, H., Kawamura, H., Aoki, K. (2010) Chemical characteristics of fog water at Mt. Tateyama, near the coast of the Japan Sea in central Japan. Water, Air, and Soil Pollution 211, 379-393. https://doi.org/10.1007/s11270-009-0307-2
  31. Wesely, M.L. (1989) Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment 23, 1293-1304. https://doi.org/10.1016/0004-6981(89)90153-4
  32. Yamaguchi, T., Noguchi, I., Watanabe, Y., Katata, G., Sato, H., Hara, H. (2013) Aerosol deposition and behavior on leaves in cool-temperate deciduous forests. Part 2. Characteristics fogwater chemistry at Lake Mashu, northern Japan in 2010. Asian Journal of Atmospheric Environment, this issue.
  33. Zhang, L., Gong, S., Padro, J., Barrie, L. (2001) A sizesegregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment 35, 549-560. https://doi.org/10.1016/S1352-2310(00)00326-5

Cited by

  1. Characteristics of Atmosphere-rice Paddy Exchange of Gaseous and Particulate Reactive Nitrogen in Terms of Nitrogen Input to a Single-cropping Rice Paddy Area in Central Japan vol.11, pp.3, 2013, https://doi.org/10.5572/ajae.2017.11.3.202