• 제목/요약/키워드: deposition power

검색결과 1,237건 처리시간 0.027초

증착온도에 따른 SBN 박막의 미세구조 및 특성 (Microstructure and Properties of SBN Thin film with Deposition Temperature)

  • 김진사;최운식;김충혁
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.544-547
    • /
    • 2009
  • The $Sr_{0.7}Bi_{2.3}Nb_{2}O_{9}$(SBN) thin films are deposited on Pt-coated electrode(Pt/Ti/$SiO_2$/Si) using RF sputtering method at various deposition temperature. The optimum conditions of RF power and Ar/$O_2$ ratio were 60[W] and 70/30, respectively. Deposition rate of SBN thin films was about 4.17[nm/min]. The crystallinity of SBN thin films were increased with increase of deposition temperature in the temperature range of $100{\sim}400[^{\circ}C]$, the surface rougness showed about 4.33[nm]. The capacitance of SBN thin films were increased with the increase of deposition temperature.

Analysis of Laser Control Effects for Direct Metal Deposition Process

  • Choi Joo-Hyun;Chang Yoon-Sang
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1680-1690
    • /
    • 2006
  • As a promising and novel manufacturing technology, laser aided direct metal deposition (DMD) process produces near-net-shape functional metal parts directly from 3-D CAD models by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using two sets of optical height sensors is designed for monitoring the melt-pool and real-time control of deposition dimension. With the feedback height control system, the dimensions of part can be controlled within designed tolerance maintaining real time control of each layer thickness. Clad nugget shapes reveal that the feedback control can affect the nugget size and morphology of microstructure. The pore/void level can be controlled by utilizing pulsed-mode laser and proper design of deposition tool-path. With the present configuration of the control system, it is believed that more innovation of the DMD process is possible to the deposition of layers in 3-D slice.

IDENTIFICATION OF POSSIBLE MERCURY SOURCES AND ESTIMATION OF MERCURY WET DEPOSITION FLUX IN LAKE ONTARIO FROM LAKE ONTARIO ATMOSPHERIC DEPOSITION STUDY (LOADS)

  • Han, Young-Ji
    • Environmental Engineering Research
    • /
    • 제10권6호
    • /
    • pp.306-315
    • /
    • 2005
  • Total gas phase mercury (TGM) concentrations and event wet-only precipitation for Hg were collected for nine months (from April, 2002 to Dec., 2002) at Sterling, NY on the shoreline of Lake Ontario. TGM concentrations measured in this study ($3.02{\pm}2.14\;ng/m^3$) were in somewhat high range compared to other background sites. Using simplified quantitative transport bias analysis (SQTBA) possible sources affecting high Hg concentration in Sterling was identified, and they are coal-fired power plants located in southern NY and Pennsylvania. Wet deposition measured at Mercury Deposition Network (MDN) sites including Pt. Petre and Egbert, ON were compared with data obtained at the Sterling to estimate the total mercury wet deposition flux to Lake Ontario. The wet deposition flux was calculated to be the highest at the Sterling site ($7.94\;{\mu}g/m^2$ from April, 2002 to Dec. 2002) and the lowest at the Egbert ($3.92\;{\mu}g/m^2$), due to the both the difference in precipitation depth and Hg concentration in the precipitation. The deposition measured at the Sterling site is similar to Lake Michigan deposition of $6-14\;{\mu}g/m^2$ (converted for ninth months) measured for Lake Michigan Mass Balance Study (LMMBS).

Deposition Pressure Dependent Electric Properties of (Hf,Zr)O2 Thin Films Made by RF Sputtering Deposition Method

  • Moon, S.E.;Kim, J.H.;Im, J.P.;Lee, J.;Im, S.Y.;Hong, S.H.;Kang, S.Y.;Yoon, S.M.
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1712-1715
    • /
    • 2018
  • To study the applications for ferroelectric non-volatile memory and ferroelectric memristor, etc., deposition pressure dependent electric the properties of $(Hf,\;Zr)O_2$ thin films by RF sputtering deposition method were investigated. The bottom electrode was TiN thin film to produce stress effect on the formation of orthorhombic phase and top electrode was Pt thin film by DC sputtering deposition. Deposition pressure was varied along with the same other deposition conditions, for example, sputtering power, target to substrate distance, post-annealing temperature, annealing gas, annealing time, etc. The structural and electric properties of the above thin films were investigated. As a result, it is confirmed that the electric properties of the $(Hf,\;Zr)O_2$ thin films depend on the deposition pressure which affects structural properties of the thin films, such as, structural phase, ratio of the constituents, etc.

기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석 (Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts)

  • 김단아;이광규;안동규
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Characterization of Ultra Low-k SiOC(H) Film Deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD)

  • Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.69-72
    • /
    • 2012
  • In this study, deposition of low-dielectric constant SiOC(H) films by conventional plasma-enhanced chemical vapor deposition (PECVD) were investigated through various characterization techniques. The results show that, with an increase in the plasma power density, the relative dielectric constant (k) of the deposited films decreases whereas the refractive index increases. This is mainly due to the incorporation of organic molecules with $CH_3$ group into the Si-O-Si cage structure. It is as confirmed by FT-IR measurements in which the absorption peak at 1,129 $cm^{-1}$ corresponding to Si-O-Si cage structure increases with power plasma density. Electrical characterization reveals that even after fast thermal annealing process, the leakage current density of the deposited films is in the order of $10^{-11}$ A/cm at 1.5 MV/cm. The reliability of the SiOC(H) film is also further characterized by using BTS test.

증착조건에 따른 SBN 세라믹 박막의 영향 (Influence of SBN Ceramic Thin Film with Deposition Conditions)

  • 김진사;조춘남;배덕권;신철기;최운식;송민종;소병문;김충혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.173-174
    • /
    • 2009
  • The SBN thin films are deposited on Pt-coated electrode(Pt/Ti/$SiO_2/Si$) using RF sputtering method at various deposition conditions. The optimum conditions of RF power and $Ar/O_2$ ratio were 60[W] and 70/30, respectively. Also, The surface rougness showed about 4.33[nm] in RF power 60[W] and $Ar/O_2$ ratio 70/30.

  • PDF

스퍼터링 증착에 의한 $PbTiO_3$ 박막제조시 증착변수의 영향 (Effects of Deposition Parameters on Sputter Deposition of Lead Titanate Thin Films)

  • 김상섭;강영민;백성기
    • 한국세라믹학회지
    • /
    • 제30권7호
    • /
    • pp.578-588
    • /
    • 1993
  • Highly c-axis oriented ferroelectric PbTiO3 thin films were deposited on MgO single crystal substrates by RF magnetron sputtering. We have studied the effects of substrate temperature, RF input power, gas comosition, gas pressure and deposition rate on the chemical and structural characteristics of PbTiO3 thin films. The epitaxy relationship of c-axis oriented films was found to be PbTiO3{100}//MgO(100) and their microstructures were highly mosaic. It was found that the most important parameter to achieve epitaxial PbTiO3 films was the substrate temperature. The activation energy for the epitaxy formation was about 0.92eV. Lower gas pressure and RF input power were favorable for the formation of epitaxial c-axis orientation. It was also found that the optimum oxygen content in Ar gas was 10% to obtain the stoichiometric PbTiO3 composition.

  • PDF

Reactive RF 마그네트론 스퍼터링법으로 Si(100) 기판에 MgO박막 제조시 증착변수의 영향 (Effect of Deposition Parameters on MgO Thin Films on Si(100) Substrates by Reactive RF Magnetron Sputtering)

  • 이영준;백성기
    • 한국세라믹학회지
    • /
    • 제31권6호
    • /
    • pp.643-650
    • /
    • 1994
  • Highly [100]-oriented MgO thin films were deposited on Si(100) single crystal substrates by reactive RF magnetron sputtering. The effects of substrate temperature, gas pressure, RF input powder, and gas composition on the characteristics of MgO thin films were studied. The higher substrate temperature and the lower operating pressure were, the better crystallinity of the deposited MgO thin films were. The influences of the RF input power and oxygen to argon ratio were very complex. The physical characteristics of the films changed dramatically with deposition conditions. Highly smooth and epitaxial MgO films were obtained at the deposition conditions as follows; subatrate temperature, $600^{\circ}C$; operating pressure, 10 mtorr; RF input power density, 2 W/$\textrm{cm}^2$; the percentage of oxygen, 10%.

  • PDF