• Title/Summary/Keyword: deposition parameter

Search Result 212, Processing Time 0.022 seconds

Effect of Carrier Gas Flow Rate on Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method (에어로졸성막법에 의해 제작된 Bi:YIG 막에 미치는 에어로졸유량의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.14-18
    • /
    • 2008
  • Bismuth-substituted yttrium iron garnet(Bi:YIG) films, which show excellent magnetic and magneto-optical properties as well as low optical losses by optimizing their deposition and post-annealing condition, have been attracting great attention in optical device research area. In this study, the Bi:YIG thick films were deposited with the aerosol deposition method for the final purpose of applying them to optical isolators. Since the aerosol deposition is based on the impact adhesion of sub-micrometer particles accelerated by a carrier gas to a substrate, the flow rate of carrier gas, which is in proportion to mechanically collision energy, should be treated as an important parameter. The Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) particles with $100{\sim}500$ nm in average diameter were carried and accelerated by nitrogen gas with the flow rate of 0.5 l/min${\sim}$10 l/min. The coercive force decreased from 51 Oe to 37 Oe exponentially with increasing gas flow rate. This is presumably due to the fact that the optimal collision energy results in reduction of impurity and pore, which makes the film to be soft magnetically. The saturation magnetization decreased due to crystallographical distortion of the film with increasing gas flow rate.

Optimization of tetrahedral amorphous carbon (ta-C) film deposited with filtered cathodic vacuum arc through Taguchi robust design (다구찌 강건 설계를 통한 자장 여과 아크 소스로 증착된 사면체 비정질 탄소막의 최적화)

  • Kwak, Seung-Yun;Jang, Young-Jun;Ryu, Hojun;Kim, Jisoo;Kim, Jongkuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.53-61
    • /
    • 2021
  • The properties of tetrahedral amorphous Carbon (ta-C) film can be determined by multiple parameters and comprehensive effects of those parameters during a deposition process with filtered cathodic vacuum arc (FCVA). In this study, Taguchi method was adopted to design the optimized FCVA deposition process of ta-C for improving deposition efficiency and mechanical properties of the deposited ta-C thin film. The influence and contribution of variables, such as arc current, substrate bias voltage, frequency, and duty cycle, on the properties of ta-C were investigated in terms of deposition efficiency and mechanical properties. It was revealed that the deposition rate was linearly increased following the increasing arc current (around 10 nm/min @ 60 A and 17 nm/min @ 100A). The hardness and ID/IG showed a correlation with substrate bias voltage (over 30 GPa @ 50 V and under 30 GPa @ 250 V). The scratch tests were conducted to specify the effect of each parameter on the resistance to plastic deformation of films. The analysis on variances showed that the arc current and substrate bias voltage were the most effective controlling parameters influencing properties of ta-C films. The optimized parameters were extracted for the target applications in various industrial fields.

Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition (원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과)

  • Kim, Ki Rak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

Microcrystalline Silicon Thin Films and Solar Cells by Hot-Wire CVD (Hot-Wire CVD법에 의한 미세결정 실리콘 박막 증착 및 태양전지 응용)

  • Lee, Jeong-Chul;Yoo, Jin-Su;Kang, Ki-Hwan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.66-69
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon$({\mu}c-Si:H)$ films prepared by hot wire chemical vapor deposition at substrate temperature below $300^{\circ}C$. The $SiH_{4}$ concentration$[F(SiH_{4})/F(SiH_{4})+F(H_{2})]$ is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}c-Si:H$ films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}c-Si:H$ films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of $B_{2}H_{6}$ to $SiH_{4}$ gas. The solar cells with structure of Al/nip ${\mu}c-Si:H$/TCO/glass was fabricated with single chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

Film Properties of TiO2 Made by Activated Reactive Evaporation (활성화 반응으로 제작된 TiO2의 박막특성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.151-154
    • /
    • 2001
  • $TiO_2$ thin film has wide application because of its high capacitanca, reflection, and good transmissivity in visible range. $TiO_2$ thin film can be made by thermal deposition method, reactive evaporation method, activated reactive evaporation(ARE) method. In the case of thermal deposition, the oxygen deficiency can occur because the melting point of Ti is very high. While in the case of reactive evaporation, high density $TiO_2$ can not be made, because reactive gas($O_2$) and evaporated material(Ti) are not fully combined, activated reactive evaporation, $TiO_2$ is easily deposited at lower gas pressure compared with reactive evaporation because the ionized reactive gas is made by plasma. Therefore, activated reactive evaporation is very useful to deposit the material having the high melting point. In this work, we formed $TiO_2$ thin film by activated reactive evaporation method. The surface of $TiO_2$ thin film was analyzed by X-ray photoelectron spectroscopy. The surface morphology which was analyzed by atomic force microscopy(AFM) shows that feature of the film surface is uniform. The dielectric capacitance, withstanding voltage were $600{\mu}F/cm^2$, 0.4V respectively. In further work, we can increase the withstanding voltage by improving the deposition parameter of substrates.

  • PDF

Properties of fluorine-doped $SnO_2$ films prepared by the ultrasonic spray deposition (초음파분무법에 의해 제작된 $SnO_2(:F)$ 박막의 특성)

  • Byung Seok Yu;Sei Woong Yoo;Jeong Hoon Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.294-305
    • /
    • 1994
  • The influence of deposition parameter on the electrical, optical andsurface morphology of $SnO_2(:F)$ films prepared by ultrasonic spray deposition using DBDA and $SnCl_4.5H_2O$ as a source material was studied. Resistivity was decreased sharply with increasing F/Sn ratio in solution up to 0.6. Depending on the source material, $SnCl_4.5H_2O$ shows lower resistivity than DBDA. When F/Sn ratio in solution was 1, optical transmittance was higher DBDA than $SnCl_4.5H_2O$.

  • PDF

Electrical and Structural Properties of Microcrystalline Silicon Thin Films by Hot-Wire CVD (Hot-Wire CVD법에 의한 microcrystalline silicon 박막의 저온 증착 및 전기 구조적 특성)

  • 이정철;유진수;강기환;김석기;윤경훈;송진수;박이준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.387-390
    • /
    • 2002
  • This paper presents deposition and characterizations of microcrystalline silicon(${\mu}$c-Si:H) films prepared by hot wire chemical vapor deposition at substrate temperature below 300$^{\circ}C$. The SiH$_4$ concentration[F(SiH$_4$)/F(SiH$_4$).+(H$_2$)] is critical parameter for the formation of Si films with microcrystalline phase. At 6% of silane concentration, deposited intrinsic ${\mu}$c-Si:H films shows sufficiently low dark conductivity and high photo sensitivity for solar cell applications. P-type ${\mu}$c-S:H films deposited by Hot-Wire CVD also shows good electrical properties by varying the rate of B$_2$H$\_$6/ to SiH$_4$ gas. The solar cells with structure of Al/nip ${\mu}$c-Si:H/TCO/g1ass was fabricated with single chamber Hot-Wire CVD. About 3% solar efficiency was obtained and applicability of HWCVD for thin film solar cells was proven in this research.

  • PDF

Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene

  • Cho, Hyunjin;Lee, Changhyup;Oh, In Seoup;Park, Sungchan;Kim, Hwan Chul;Kim, Myung Jong
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.205-211
    • /
    • 2012
  • Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.

High-rate, Low-temperature Deposition of Multifunctional Nano-crystalline Silicon Nitride Films

  • Hwang, Jae-Dam;Lee, Kyoung-Min;Keum, Ki-Su;Lee, Youn-Jin;Hong, Wan-Shick
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.109-112
    • /
    • 2010
  • The solid phase compositions and dielectric properties of silicon nitride ($SiN_x$) films prepared using the plasma enhanced chemical vapor deposition (PECVD) technique at a low temperature ($200^{\circ}C$) were studied. Controlling the source gas mixing ratio, R = $[N_2]/[SiH_4]$, and the plasma power successfully produced both silicon-rich and nitrogen-rich compositions in the final films. The composition parameter, X, varied from 0.83 to 1.62. Depending on the film composition, the dielectric properties of the $SiN_x$ films also varied substantially. Silicon-rich silicon nitride (SRSN) films were obtained at a low plasma power and a low R. The photoluminescence (PL) spectra of these films revealed the existence of nano-sized silicon particles even in the absence of a post-annealing process. Nitrogen-rich silicon nitride (NRSN) films were obtained at a high plasma power and a high R. These films showed a fairly high dielectric constant ($\kappa$ = 7.1) and a suppressed hysteresis window in their capacitance-voltage (C-V) characteristics.

Characterization of Al-doped ZnO Thin Films by Atomic Layer Deposition (원자층 증착법으로 증착한 Al을 도핑한 ZnO 박막의 특성평가)

  • Shin, Woong-Chul;Choi, Kyu-Jeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.175-175
    • /
    • 2008
  • 투명전극으로 사용되고 있는 Indium tin oxide (ITO) 박막은 전기적 전도도와 기판과의 접확성, 화학적 안정성, 광투과율 등의 특성과 함께 우수한 전기 광학적 거동을 보이고 있다. 그러나 ITO는 고가의 재료이기 때문에 대체 투명전극으로 Al을 도핑한 ZnO 박막의 연구가 활발히 진행되고 있다. ZnO:Al 박막은 chemical vapor deposition, reactive magnetron sputtering, electron-beam evaporation, pulsed laser deposition 등의 당양한 방법을 이용하여 증착하였다. 그러나 최근 낮은 온도에서 대면적의 균일성과 우수한 특성 때문에 atomic layer depositon (ALD) 방법을 이용하여 많은 연구가 진행되고 있으며, 이런 투명전극은 태양전지를 위해 연구되어지고 있다. 따라서 본 연구에서는 ALD 방법으로 Al의 도핑 양을 조절하여, ZnO:Al 박막을 제조하여 그 특성을 평가하고, 또한 ZnO TFT를 제작하여 발표하고자 한다. ZnO와 ZnO:Al 박막은 실리콘과 유리 기판 위에 ALD (Lucida-D200, NCD Technology) 장치로 증착하였다. DEZn, TMA, $H_2O$는 ZnO와 ZnO:Al 박막을 증착하기 위한 전구체와 반응가스로 사용하였다. 증착된 박막은 XRD와 HRTEM을 이용하여 결정구조와 미세구조를 분석하였다. AFM과 4-point probe를 이용하여 증착된 박막의 표면 거칠기와 면저항을 관찰하였다. semiconductor parameter 분석기를 이용하여 제작된 ZnO TFT를 평가하였다.

  • PDF