Browse > Article
http://dx.doi.org/10.4283/JKMS.2008.18.1.014

Effect of Carrier Gas Flow Rate on Magnetic Properties of Bi:YIG Films Deposited with Aerosol Deposition Method  

Shin, Kwang-Ho (Department of Multimedia Communication Engineering, Kyungsung University)
Abstract
Bismuth-substituted yttrium iron garnet(Bi:YIG) films, which show excellent magnetic and magneto-optical properties as well as low optical losses by optimizing their deposition and post-annealing condition, have been attracting great attention in optical device research area. In this study, the Bi:YIG thick films were deposited with the aerosol deposition method for the final purpose of applying them to optical isolators. Since the aerosol deposition is based on the impact adhesion of sub-micrometer particles accelerated by a carrier gas to a substrate, the flow rate of carrier gas, which is in proportion to mechanically collision energy, should be treated as an important parameter. The Bi:YIG($Bi_{0.5}Y_{2.5}Fe_5O_{12}$) particles with $100{\sim}500$ nm in average diameter were carried and accelerated by nitrogen gas with the flow rate of 0.5 l/min${\sim}$10 l/min. The coercive force decreased from 51 Oe to 37 Oe exponentially with increasing gas flow rate. This is presumably due to the fact that the optimal collision energy results in reduction of impurity and pore, which makes the film to be soft magnetically. The saturation magnetization decreased due to crystallographical distortion of the film with increasing gas flow rate.
Keywords
Bismuth-substituted yttrium iron garnet(Bi:YIG) film; aerosol deposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. W. Nielsen and E. F. Dearborn, J. Phys. Chem. Solid., 5, 202 (1958)   DOI   ScienceOn
2 J. Bahl, Microwave Solid State Circuit Design, John Wiley & Sons Inc., 325(1998)
3 Y. Konishi, Microwave Integrated Circuit, Marcel Dekker Inc., 550 (1991)
4 K. H. Shin, M. Mizoguchi, and M. Inoue, Journal of Magnetics, 12, 129 (2007)   과학기술학회마을   DOI   ScienceOn
5 M. Mizoguchi, H. Uchida, K. H. Shin, J. Akedo, and M. Inoue, International Conference on Magnetism, Kyoto, Japan, 231 (2006)
6 http://www.corning.com/
7 E. E. Anderson, Physical Review, 134, A1581 (1993)   DOI
8 http://www.engineeringtoolbox.com/specific-heat-solids-d_154.html
9 한봉희, X선회절의 기초, 동명사, 234 (1983)
10 K. H. Shin, M. Muzoguchi, and M. Inoue, J. of Magntics, 12, 129 (2007)   DOI   ScienceOn
11 H. Masuda, K. Higashitani, and H. Yoshida, Powder Technology Handbook, 183 (2006)
12 K. H. Shin, J. of Magnetics, submitted (2008)
13 D. S. Todorovsky, R. V. Todorovska, and St. Groudeva-Zotova, Materials Letter, 55, 41 (2002)   DOI   ScienceOn
14 J. Akedo, N. Minami, K. Fukuda, M. Ichiki, and R. Maeda, Ferroelectrics, 231, 285 (1999)   DOI
15 奧田高士, 日本應用磁氣學會誌, 11, 147 (1987)
16 O. Kamada, H. Minemoto, and S. Ishizuka, J. Appl. Phys., 61, 3268 (1987)   DOI
17 S. Wittekoek, T. Popma, J. Robertson, and P. Bongers, Phys. Rev., B12, 2777 (1975)
18 J. Akedo and M. Lebedev, Appl. Phys. Lett., 77, 1710 (2000)   DOI   ScienceOn
19 H. Takeuchi, Jpn. J. Appl. Phys., 14, 1903 (1975)   DOI
20 T. Takayama, K. Nakamura, M. Yayoi, M. Inoue, T. Fujii, M. Abe, and K. Arai, J. Magn. Soc. Jpn., 24, 391 (2000)   DOI
21 M. Lebedev, J. Akedo, K. Mori, and T. Eiju, J. Vac. Sci. Technol. A, 18, 563 (2000)   DOI   ScienceOn