• 제목/요약/키워드: deposited layer

검색결과 2,397건 처리시간 0.029초

압전 특성의 보호층을 통한 리튬 금속 전지의 전기화학적 특성 개선 (The Enhanced Electrochemical Performance of Lithium Metal Batteries through the Piezoelectric Protective Layer)

  • 박대웅;신원호;손희상
    • 멤브레인
    • /
    • 제33권1호
    • /
    • pp.13-22
    • /
    • 2023
  • 리튬 금속 기반 전극의 높은 용량에도 불구하고, 제어가 어려운 덴드라이트 성장은 낮은 쿨롱 효율, 안전 문제를 야기해, 리튬금속 배터리의 상용화를 제한한다. 본 연구에서는 압전 복합체인 BaTiO3/PVDF (BTO@PVDF) 기반 보호층을 리튬금속에 코팅, 덴드라이트에 의한 부피팽창으로 발생한 변형을 분극을 이용하여, 리튬 금속 전극의 안정성 및 성능을 향상하고자 한다. 이를 통해, 균일한 리튬이온의 증착이 가능해졌으며, BTO@PVDF 전극은 100 사이클 동안 약 98.1% 이상의 쿨롱 효율을 나타내었다. 또한, CV를 통해 향상된 리튬이온의 확산계수(DLi+) 증가를 보였으며, 본 연구에서 제시된 전략은 리튬 금속 전극의 성능 향상에 새로운 길을 나타내준다.

UNIST-DISNY 설비 피복관에 침적된 크러드의 열전달 모델링 (Modelling Heat Transfer Through CRUD Deposited on Cladding Tube in UNIST-DISNY Facility)

  • 유선오;김지용;방인철
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.109-116
    • /
    • 2023
  • This study presents a CRUD modelling to simulate the thermal resistance behavior of CRUD, deposited on the surface of a cladding tube of a fuel assembly. When heat produced from fuels transfers to a coolant through a cladding tube, the CRUD acting as an additional thermal resistance is expressed as two layers, i.e., a solid oxide layer and an imaginary fluid layer, which are added to the experimental tube's heat structure of the MARS-KS input data. The validation calculation for the experiments performed in UNIST-DISNY facility showed that the center and surface temperatures of the cladding tube increased as the porosity and the steam amount inside pores of the CRUD got higher. In addition, the temperature gradient in the imaginary fluid layer was calculated to be larger than that in the solid oxide part, indicating that the steam amount inside the layer acted more largely as thermal resistance. It was also evaluated through sensitivity calculations that the cladding tube temperature was more sensitive to the CRUD porosity and the steam amount in pores than to the inlet flow rate of the coolant.

PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가 (Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps)

  • 차남구;박창화;조민수;김규채;박진구;정준호;이응숙
    • 한국재료학회지
    • /
    • 제16권4호
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Formation of a MnSixOy barrier with Cu-Mn alloy film deposited using PEALD

  • Moon, Dae-Yong;Hwang, Chang-Mook;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.229-229
    • /
    • 2010
  • With the scaling down of ultra large integrated circuits (ULSI) to the sub-50 nm technology node, the need for an ultra-thin, continuous and conformal diffusion barrier and Cu seed layer is increasing. However, diffusion barrier and Cu seed layer formation with a physical vapor deposition (PVD) method has become difficult as the technology node is reduced to 30 nm and beyond. Recent work on self-forming barrier processes using PVD Cu alloys have attracted great attention due to the capability of conformal ultra-thin barrier formation using a simple technique. However, as in the case of the conventional barrier and Cu seed layer, PVD of the Cu alloy seed layer will eventually encounter the difficulty in conformal deposition in narrow line trenches and via holes. Atomic layer deposition (ALD) has been known for its good step coverage and precise thickness control, and is a candidate technique for the formation of a thin conformal barrier layer and Cu seed layer. Conformal Cu-Mn seed layers were deposited by plasma enhanced atomic layer deposition (PEALD) at low temperature ($120^{\circ}C$), and the Mn content in the Cu-Mn alloys were controlled form 0 to approximately 10 atomic percent with various Mn precursor feeding times. Resistivity of the Cu-Mn alloy films decreased by annealing due to out-diffusion of Mn atoms. Out-diffused Mn atoms were segregated to the surface of the film and interface between a Cu-Mn alloy and $SiO_2$, resulting in self-formed $MnO_x$ and $MnSi_xO_y$, respectively. No inter-diffusion was observed between Cu and $SiO_2$ after annealing at $500^{\circ}C$ for 12 h, indicating an excellent diffusion barrier property of the $MnSi_xO_y$. The adhesion between Cu and $SiO_2$ was enhanced by the formation of $MnSi_xO_y$. Continuous and conductive Cu-Mn seed layers were deposited with PEALD into 32 nm $SiO_2$ trench, enabling a low temperature process, and the trench was perfectly filled using electrochemical plating (ECD) under conventional conditions. Thus, it is the resultant self-forming barrier process with PEALD Cu-Mn alloy film as a seed layer for plating Cu that has further potential to meet the requirement of the smaller than 30 nm node.

  • PDF

Thin-bedded, Fine-grained Lacustrine Turbidite Facies on the Northern Coast of Jindo and the Adjacent Area: Density underflow-induced, Ash-rich Turbidity Current Deposits

  • Chang Tae Soo;Chun Seung Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • 한국석유지질학회 1998년도 제5차 학술발표회 발표논문집
    • /
    • pp.29-37
    • /
    • 1998
  • The sedimentary succession on the northern coast of Jindo and the adjacent area comprises the thinly bedded, fine-grained deposits of an epiclastic sandstone, siltstone, black shale/mudstone, and cherty mudstone (ca. 200m in vertical thickness), which are interpreted as the finely stratified turbidites mainly by density underflow-induced currents. Most deposits can be divided into eight facies: thin-bedded, ash-rich massive sandstone layer (mS), graded and laminated mudstone layer (glM), graded mudstone layer with ripple lamination (rM), laminated and graded siltstone layer (lgZ), finely laminated black shale layer (IBS), structureless mudstone layer (mM), thin-bedded cherty mudstone layer (lCM), and contorted and laminated mudstone layer (dlM), The thin-bedded, ash-rich sandstone facies is interpreted to be deposited from high-density turbid underflows during a relatively large flooding. Most thinly bedded mudstone facies would be deposited from low-density turbid underflows (turbidity currents) with some different hydrodynamic condition and sediment concentration during the high discharge of river water. Whereas the structureless mudstone facies may result from raining down of suspended sediment intermittently supplied by overflows and interflows. From the entire succession, graded and laminated mudstone layers interbedded with thin-bedded, ash-rich massive sandstone are dominant in the lower part of the succession, and graded mudstone layers with ripple lamination ripple lamination occur mainly in the middle part of it. On the other hand, iaminated/raded siltstone and contorted/laminated mudstone layers prevail in the upper part. The transition of facies association is suggestive of the continuous change of main depositional setting from basin plain to lower slope, which could be due to the movement of depocenter by the increase of sediment supply (volcanic activity).

  • PDF

이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상 (Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition)

  • 김보경;김지훈;황도근;이상석
    • 한국자기학회지
    • /
    • 제12권4호
    • /
    • pp.132-136
    • /
    • 2002
  • 유리기관 위에 이온 빔 증착(ion beam deposition ; IBD)법으로 제작한 버퍼층(buffer layer) Si의 두께에 따른 [NiFe/FeMn/NiFe]3층박막의 결정성과 교환결합세기(exchange bias field ; H$_{ex}$)를 조사하였다. 버퍼층 Si는 NiFe층을 fcc(111)로 매우 우세하게 초기에 결정성장 시켰다. Si/NiFe 위의 증착된 FeMn층은 ${\gamma}$-fcc(111)구조로 성장함에 따라 안정되고 큰 H$_{ex}$를 가졌고, 버퍼 110 Oe로 거의 일정하였으며, 상부 FeMn/NiFe 이중구조의 H$_{ex}$는 300 Oe까지 증가하였다. 버퍼층이 Ta일 경우와 비교해서 Si일 때 H$_{ex}$와 결정성이 향상되었다.이 향상되었다.

Cu2In3, CuGa, Cu2Se를 이용한 전구체박막을 셀렌화하여 제조한 Cu(In,Ga)Se2 박막의 미세구조 및 농도분포 변화 (Microstructure and Compositional Distribution of Selenized Cu(In,Ga)Se2 Thin Film Utilizing Cu2In3, CuGa and Cu2Se)

  • 이종철;정광선;안병태
    • 한국재료학회지
    • /
    • 제21권10호
    • /
    • pp.550-555
    • /
    • 2011
  • A high-quality CIGS film with a selenization process needs to be developed for low-cost and large-scale production. In this study, we used $Cu_2In_3$, CuGa and $Cu_2Se$ sputter targets for the deposition of a precursor. The precursor deposited by sputtering was selenized in Se vapor. The precursor layer deposited by the co-sputtering of $Cu_2In_3$, CuGa and $Cu_2Se$ showed a uniform distribution of Cu, In, Ga, and Se throughout the layer with Cu, In, CuIn, CuGa and $Cu_2Se$ phases. After selenization at $550^{\circ}C$ for 30 min, the CIGS film showed a double-layer microstructure with a large-grained top layer and a small-grained bottom layer. In the AES depth profile, In was found to have accumulated near the surface while Cu had accumulated in the middle of the CIGS film. By adding a Cu-In-Ga interlayer between the co-sputtered precursor layer and the Mo film and adding a thin $Cu_2Se$ layer onto the co-sputtered precursor layer, large CIGS grains throughout the film were produced. However, the Cu accumulated in the middle of CIGS film in this case as well. By supplying In, Ga and Se to the CIGS film, a uniform distribution of Cu, In, Ga and Se was achieved in the middle of the CIGS film.

HfO2/Hf/Si MOS 구조에서 나타나는 HfO2 박막의 물성 및 전기적 특성 (Electrical and Material Characteristics of HfO2 Film in HfO2/Hf/Si MOS Structure)

  • 배군호;도승우;이재성;이용현
    • 한국전기전자재료학회논문지
    • /
    • 제22권2호
    • /
    • pp.101-106
    • /
    • 2009
  • In this paper, Thin films of $HfO_2$/Hf were deposited on p-type wafer by Atomic Layer Deposition (ALD). We studied the electrical and material characteristics of $HfO_2$/Hf/Si MOS capacitor depending on thickness of Hf metal layer. $HfO_2$ films were deposited using TEMAH and $O_3$ at $350^{\circ}C$. Samples were then annealed using furnace heating to $500^{\circ}C$. Round-type MOS capacitors have been fabricated on Si substrates with $2000\;{\AA}$-thick Pt top electrodes. The composition rate of the dielectric material was analyzed using TEM (Transmission Electron Microscopy), XRD (X-ray Diffraction) and XPS (X-ray Photoelectron Spectroscopy). Also the capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) characteristics were measured. We calculated the density of oxide trap charges and interface trap charges in our MOS device. At the interface between $HfO_2$ and Si, both Hf-Si and Hf-Si-O bonds were observed, instead of Si-O bond. The sandwiched Hf metal layer suppressed the growing of $SiO_x$ layer so that $HfSi_xO_y$ layer was achieved. And finally, the generation of both oxide trap charge and interface trap charge in $HfO_2$ film was reduced effectively by using Hf metal layer.

Al2O3 기판위에 형성된 Ti-O 완충층을 가진 Ta/Ta2O5커패시티의 특성 (The Characteristics of Ti-O Buffer Layered Ta/Ta2O5Capacitors on the Al2O3 substrate)

  • 김현주;송재성;김인성;김상수
    • 한국전기전자재료학회논문지
    • /
    • 제16권9호
    • /
    • pp.807-811
    • /
    • 2003
  • We investigated the electrical characterisitics of T $a_2$ $O_{5}$ (tantalum pentoxide) film and Ti-O/T $a_2$ $O_{5}$ film deposited on $Al_2$ $O_3$based substrate. Ta (tantalum) electrode and $Al_2$ $O_3$ substrate was used for the purpose of simplifying the manufacturing process in IPD's (integrated passive devices). Dielectric materials (T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ films) deposited on Ta/Ti/A $l_2$ $O_3$ were annealed at 700 $^{\circ}C$ for 60 sec. in vacuum. The XRD results showed that as-deposited T $a_2$ $O_{5}$ film possessed amorphous structure, which was transformed to crystallines by rapid thermal heat treatment. We compared the lnJ- $E^{{\frac}{1}{2}}$, C-V, C-F of both as-deposited and annealed dielectric thin films deposited on Ta bottom electrode. From this results, we concluded that the leakage current could be reduced by introducing Ti-O buffer layer and conduction mechanisms of T $a_2$ $O_{5}$ and Ti-O/T $a_2$ $O_{5}$ could be interpreted appropriately by Schottky emission effect.

MPCVD를 이용한 다결정 다이아몬드 박막의 증착 및 물성 분석 (Characterization of polycrystalline diamond thin films deposited by using an MPCVD)

  • 이진복;박진석;류경선;권상직
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1330-1332
    • /
    • 1998
  • Polycrystalline diamond films are deposited on a Si substrate by employing a 2.45 GHz $\mu$-wave plasma CVD system. Prior to depositing the diamond film, a DPR(diamond photo-resist) layer is coated to enhance the nucleation density. The growth rate of diamond films increases with the $\mu$-wave power and approaches to be about $1.5{\mu}m/hr$ at 1100 W. Structural properties of diamond films deposited are characterized from their SEM photographs, Raman spectra, and AFM surface images. Lager grain size, higher intensity of diamond peak, and smoother surface are observed for films deposited at a higher power. The possible mechanism on the diamond growth is also discussed to explain the experimental results.

  • PDF