• Title/Summary/Keyword: deposited layer

Search Result 2,401, Processing Time 0.025 seconds

Study on Characteristics of Micro Patterned Copper Electrodeposition according to Parameters in Laser Beam Machining (레이저빔 가공 인자에 따른 구리도금 미세 패터닝 특성 연구)

  • Shin, Hong Shik
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.21-25
    • /
    • 2015
  • This paper proposes a fabrication process of deposited layer with micro patterns that uses a combination of a pulsed laser beam machining and an electrodeposition. This process consists of the electrodeposition and the laser beam machining. The deposited layer on metal can be selectively eliminated by laser ablation. As a result, the deposited layer with micro patterns can be fabricated without a mask. The characteristics of the deposited layer on stainless steel were investigated according to the average power and marking speed in the pulsed laser beam machining. The optimal laser beam conditions for precise micro patterning of the deposited layer were determined. Finally, the deposited copper layer with micro text was successfully fabricated by the pulsed laser beam machining.

Dielectric properties with heat-input condition of PZT thin films for ULSI's capacitor -1- A study on the improvement of leakage current of PZT thin films using a amorphous PZT layer (초고집적회로의 커패시터용 PZT박막의 입열 조건에 따른 유전특성 -1- 비정질 PZT를 사용한 PZT 박막의 누설전류 개선에 관한 연구)

  • 마재평;백수현;황유상
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.101-107
    • /
    • 1995
  • To improve the leakage current, we developed two step sputtering method where PZT thin film in first deposited at room temperature followed by 600.deg. C deposition. The method used an amorphous PZT layer deposited at room temperature to keep a stable interface during sputtering at high temperature. PZT thin films were deposited on Pt/Ti/SiO$_{2}$/Si substrate at room temperature and 600.deg. C sequentially. The effect of the layer deposited at room temperature was investigated with regard to I-V characteristics and P-E hysteresis loop. In the case of the sample with the layer deposited at room temperature, both leakage current and dielectric constant were decreased. The thicker the layer deposited at room temperature was, the lower dielectric constant was. However, leakage current was indepenent of the variation of the thickness ratio. The sample with 200$\AA$ of the layer deposited at room temperature showed the most promising results in both dielectric constant and leakage current.

  • PDF

The Effects of Deposition Temperature and RF Power on the Plasma Assisted Chemical Vapor Deposition of TiCN Films (증착온도와 RF Power가 TiCN박막의 플라즈마 화학증착에 미치는 영향)

  • 김시범;김광호;김상호;천성순
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.323-330
    • /
    • 1989
  • Wear restance titanium carbonitride (TiCN) films were deposited on the SKH9 tool steels and WC-Co cutting tools by plasma assisted chemical vapor deposition (PACVD) using a gaseous mixture of TiCl4, CH4, N2, H2 and Ar. The effects of the deposition temperature and RF(Radio Frequency) power on the deposition rate, chlorine content and crystallinity of the deposited layer were studied. The experimental results showed that the stable and adherent films could be obtained above the deposition temperature of 47$0^{\circ}C$ and maximum deposition rate was obtained at 485$^{\circ}C$. The deposition rate was much affected by RF power and maximum at 40W. The crystallinity of the deposited layer was improved with increasing the deposition temperature and RF power. The TiCN films deposited by PACVD contained much chlorine. The chlorine content in the TiCN films was affected by deposition conditions and decreased with improving the crystallinity of the deposited layer. The deposited TiCN films deposited at the deposition temperature of 52$0^{\circ}C$ and RF power of 40W had an uniform surface with very fine grains of about 500$\AA$ size. The microhardness of the deposited layer was 2,300Kg/$\textrm{mm}^2$.

  • PDF

Effect of the thickness of CeO$_2$ buffer layer on the YBCO coated conductor

  • Dongqi Shi;Ping Ma;Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Chung, Jun-Ki;Kyu-Jeong, Song;Park, Chan;Moon, Seung-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 2004
  • Three group samples with difference thickness of $CeO_2$ capping layer deposited by PLD were studied. Among them, one group $CeO_2$ films were deposited on stainless steel tape coated with IBAD- YSZ and $CeO_2$ buffer layer ($CeO_2$/IBAD-YSZ/SS); other two groups of $CeO_2 YSZ Y_2O_3$multi-layer were deposited on NiW substrates for fabrication of YBCO coated conductor through RABiTS approach. The pulsed laser deposition (PLD) and DC magnetron sputtering were employed to deposit these buffer layers. On the top of buffer layer, YBCO film was deposited by PLD. The effect of thickness of $CeO_2$ film on the texture of $CeO_2$ film and critical current density ($J_c$) of YBCO film were analyzed. For the case $CeO_2$ on $CeO_2$/IBAD-YSZ/SS, there was a self-epitaxy effect with the increase of $CeO_2$ film. For $YSZ/Y_2O_3$ NiW which was deposited by PLD or DC magnetron sputtering, there is not self-epitaxy effect. However, the capping layer of $CeO_2$ film deposited by PLD improved the quality of buffer layer for $YSZ/Y_2O_3$ which was deposited by DC magnetron sputtering, therefore increased the $J_c$ of YBCO film.

Analysis of thermal stresses developed in plasma sprayed layer (플라즈마 용사층에 발생하는 응력해석)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.58-68
    • /
    • 1990
  • The formation of thermal stresses by plasma spraying is generally considered as adverse. Therefore, the knowledge of stress distribution in the deposited layer during and after plasma spraying will be of special interest. In this study finite difference heat transfer analysis and finite element stress analysis were carried out to predict the change of stress distribution in the plasma coated layer with the variations of preheat temperature, number of scan, particle size, and bond coat. The results of the numerical analysis were as follows: 1) Transient stresses developed in the coated layer were up to the level of yiedl strength at the temperature. 2) The tensile stresses were developed in the deposited layer and the surface of the substrate, but the compressive stresses were developed in the rest of the substrate. 3) Transient and residual stresses were significantly affected by the preheat temperature. 4) The variations of temperature of powder particle and number of torch scan changed tensile stress distribution, but made no difference on the magnitude of the stresses. 5) Bond coated layer reduced the stree level of deposited layer.

  • PDF

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder (Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Jeon, Chan-Hu;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Excellent Crystallinity of Ba Ferrite Layers Deposited on Pt(111) Underlayers

  • Matsushita, Nobuhiro;Feng, Jie;Watanabe, Koh;Ichinose, Makoto;Nakagawa, Shigeki;Naoe, Masahiko
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.315-317
    • /
    • 2000
  • A magnetoplumbite type of Ba ferrite(BaM) layers were deposited on Pt(111) and Pt(200) layers, and their c-axis orientation and magnetic characteristics were compared each other. The as-deposited BaM layer on Pt(111) one at the substrate temperature $T_s$ above $500^{\circ}C$ revealed remarkable c-axis orientation. The saturation magnetization 4$\piM_s$ and the perpendicular coercivity $H_{c⊥}$ of the films as-deposited at $T_s$ of $600^{\circ}C$ were 4.0kG and 2.5kOe, respectively. On the other hand, BaM ferrite layer deposited on Pt(200) layer at $T_s$ as relatively low as $500^{\circ}C$ also revealed weak c-axis orientation as well as (107) one and the films as-deposited at $T_s$ of $600^{\circ}C$ exhibited 4$\piMs_{and}$ $H_{c⊥}$ of 2.8kG and 2.5kOe, respectively. It was suggested that although chemical activity of Pt surface was effective for the formation of BaM crystallites, the lattice matching was also important for obtaining BaM layer with good c-axis orientation and large perpendicular anisotropy.sotropy.

  • PDF

Study on Depositing Oxide Films on Ni Substrate for Superconducting Tape (초전도 테이프 제작을 위한 니켈기판 상의 산화물 박막 증찰)

  • Kim, Ho-Sup;Shi, Dongqui;Ko, Rock-Kil;Chung, Jun-Ki;Ha, Hong-Soo;Song, Kyu-Jeong;Park, Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1356-1361
    • /
    • 2004
  • High temperature superconducting coated conductor has a structure of ///. The buffer layer consists of multi-layer, this study reports the deposition method and optimal deposition conditions of YSZ(Yttria-stabilized zirconia) layer which plays a important part in preventing the elements of substrate from diffusing into the superconducting layer. YSZ layer was deposited by DC reactive sputtering technique using water vapor for oxidizing deposited elements on substrate. To investigate optimal thickness of YSZ film, four YSZ/CeO$_2$/Ni samples with different YSZ thickness(130 nm, 260 nm, 390 nm, and 650 nm) were prepared. The SEM image showed that the surface of YSZ layer was getting to be rougher as YSZ layer was getting thicker and the growth mode of YSZ layer was columnar grain growth. After CeO$_2$ layer was deposited with the same thickness of 18.3 nm on each four samples, YBCO layer was deposited by PLD method with the thickness of 300 nm. The critical currents of four samples were 0, 6 A, 7.5 A, and 5 A respectively. This shows that as YSZ layer is getting thicker, YSZ layer plays a good role as a diffusion barrier but the surface of YSZ layer is getting rougher.

Absorptance and Electrical Properties Evaluation of Nickel Layer Deposited onto Thin Film Pyroelectric PZT IR Detector (PZT박막 적외선 감지소자의 적외선 흡수층으로 증착된 니켈 박막의 광학 및 전기적 특성 분석)

  • Ko, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1727-1732
    • /
    • 2004
  • A nickel layer was deposited onto the PZT thin films, serving both as a selective radiation absorption layer and as a top electrode. The absorption properties of such nickel coated multi-layered infrared detectors were studied in the visible and infrared wavelength ranges. The optimal thickness of the nickel layer on our substrate was 10nm. The maximum absorption coefficient of the deposited 10nm thick nickel layer was 0.7 at a 632nm wavelength. However, a striking asymmetric polarization hysteresis loop was observed in these PZT thin films with nickel as the top electrode. This asymmetric polarization was attributed to the difference between the dynamic pyroelectric responses in these Ni/PZT/Pt films poled either positively or negatively before the measurement. A positively poled film showed a 40% higher voltage response than a negatively poled detector.

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • Yun, Gwan-Hyeok;Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF