• Title/Summary/Keyword: dental cements

Search Result 180, Processing Time 0.019 seconds

Cytotoxicity of two self-adhesive resin cements and their interference in the phagocytic activity of murine macrophages

  • Danilo Couto da Silva ;Leonardo Gomes Vaz;Warley Luciano Fonseca Tavares;Leda Quercia Vieira;Ricardo Reis de Oliveira ;Antonio Paulino Ribeiro Sobrinho
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.3
    • /
    • pp.31.1-31.9
    • /
    • 2022
  • Objectives: This study aimed to evaluate in vitro the effects of the self-adhesive resin cements RelyX U200 (3M ESPE) and seT PP (SDI Limited) on murine macrophages and the interference of the photoactivation. Materials and Methods: Cell viability assays, cell adherence, yeast phagocytosis of Saccharomyces boulardii and production of reactive oxygen species (ROS) were performed in the presence of capillaries containing the respective self-adhesive cement when photoactivated or not. Results: After long periods of contact, both types of cements, when not photoactivated, are more cytotoxic for macrophages. The seT PP cement when only chemically activated seems to interfere more negatively in the process of phagocytosis of yeasts S. boulardii. Both types of cements interfere in the cell adhesion process, independent of photoactivation. None of the types of cements tested was able to induce the production of ROS. Conclusions: Our results highlight the great importance of the photoactivation of self-adhesive resin cements in the dental clinic, since RelyX U200, when photoactivated, presented the best results within the evaluated parameters.

AN EXPERIMENTAL STUDY ON THE EFFECTS OF RETAINED CEMENTS IN THE GINGIVAL SULCUS AROUND ARTIFICIAL CROWNS (치관보철물(齒冠補綴物) 주변(周邊)에 저류(貯留)된 시멘트가 치은조직에 미치는 영향(影響)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Dong-Ak
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.17-21
    • /
    • 1976
  • The author studied the gingival responses to some dental cements in the gingival sulcus around artificial crowns. Abutment preparation for full veneer crown was performed in the canines of the two dogs. The location of cervical margins was about 0.5mm. below the gingival crest. Niranium metal crowns were constructed for the teeth, and cemented with zinc phosphate cement or polycarboxy late cement. In the experimental groups the retained cements in the gingival sulucus were not removed, and in the control groups the cements were removed completely after cementation. The dogs were sacrificed at 3 weeks and 5 weeks respectively after cementation. The gingival responses to these cements were examined histologically. The findings were as follows. 1. There was severe inflammation in the gingiva where the cements had been retained in the gingival sulcus around artificial crowns. 2. There was more severe inflammation in the gingiva which had contacted with zinc phosphate cement than in the gingiva with polycarboxylate cement. 3. There was mild inflammation in the gingiva around the margins of Niranium crowns. 4. The retained cement around the margin of restoration should be completely removed after cementation.

  • PDF

COMPARISON OF RETENTIVE FORCES OF TEMPORARY CEMENTS AND ABUTMENT HEIGHT USED WITH IMPLANT-SUPPORTED PROSTHESES

  • Lee, Dong-Hee;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • STATEMENT OF THE PROBLEM: Recent data regarding the effects the cement type and abutment heights on the retentive force of a prosthetic crown are inconsistent and unable to suggest clinical guidelines. PURPOSE OF THE STUDY: This study evaluated the effects of different types of temporary cements and abutment heights on the retentive strength of cement-retained implant-supported prostheses. MATERIALS AND METHODS: Prefabricated implant abutments, 4 mm in diameter, $8^{\circ}$taper per side, and light chamfer margins, were used. The abutment heights of the implants were 4 mm, 5.5 mm and 7 mm. Seven specimens of a single crown similar to a first premolar were fabricated. Six commercially available temporary cements, TempBond, TempBond NE, Cavitec, Procem, Dycal, and IRM, were used in this study. Twenty-four hours after cementation, the retentive strengths were measured using a universal testing machine with a crosshead speed of 0.5 mm/min. The cementation procedures were repeated 3 times. The data was analyzed using two-way analysis of variance and a Tukey test (${\alpha}$=0.05). RESULTS: The tensile bond strength ranged from 1.76 kg to 19.98 kg. The lowest tensile strengths were similar in the TempBond and Cavitec agents. Dycal showed the highest tensile bond strength (P<0.01). More force was required to remove the crowns cemented to the long abutments (P<0.05). CONCLUSION: TempBond and Cavitec agents showed the lowest mean tensile bond strength. The Dycal agent showed more than double the tensile bond strength of the TempBond agent.

Adhesion of 10-MDP containing resin cements to dentin with and without the etch-and-rinse technique

  • Turp, Volkan;Sen, Deniz;Tuncelli, Betul;Ozcan, Mutlu
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.226-233
    • /
    • 2013
  • PURPOSE. This study evaluated the adhesion of 10-MDP containing self-etch and self-adhesive resin cements to dentin with and without the use of etch-and-rinse technique. MATERIALS AND METHODS. Human third molars (N=180) were randomly divided into 6 groups (n=30 per group). Conventional (Panavia F2.0, Kuraray-PAN) and self-adhesive resin cements (Clearfil SA, Kuraray-CSA) were bonded to dentin surfaces either after application of 3-step etch-and-rinse (35% $H_3PO_4$ + ED Primer) or two-step self-etch adhesive resin (Clearfil SE Bond). Specimens were subjected to shear bond strength test using the universal testing machine (0.5 mm/min). The failure types were analyzed using a stereomicroscope and quality of hybrid layer was observed under a scanning electron microscope. The data (MPa) were analyzed using two-way ANOVA and Tukey's tests (${\alpha}$=.05). RESULTS. Overall, PAN adhesive cement showed significantly higher mean bond strength ($12.5{\pm}2.3-14.1{\pm}2.4$ MPa) than CSA cement ($9.3{\pm}1.4-13.9{\pm}1.9$ MPa) (P<.001). Adhesive failures were more frequent in CSA cement groups when used in conjunction with two-step self-adhesive (68%) or no adhesive at all (66%). Hybrid layer quality was inferior in CSA compared to PAN cement in all conditions. CONCLUSION. In clinical situations where bonding to dentin substrate is crucial, both conventional and self-adhesive resin cements based on 10-MDP can benefit from etch-and-rinse technique to achieve better quality of adhesion in the early clinical period.

Effect of hemispherical dimples at titanium implant abutments for the retention of cemented crowns

  • Jung-Hoon Choi;Seong-Joo Heo;Jai-Young Koak;Seong-Kyun Kim;Ji-Man Park;Jin-Soo Ahn
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • PURPOSE. The aim of this study was to assess the effect of hemispherical dimple structures on the retention of cobalt-chromium (Co-Cr) crowns cemented to titanium abutments, with different heights and numbers of dimples on the axial walls. MATERIALS AND METHODS. 3.0-mm and 6.0-mm abutments (N = 180) and Co-Cr crowns were prepared. The experimental groups were divided into two and four dimple groups. The crowns were cemented by TempBond and PANAVIA F 2.0 cements. The retention forces were measured after thermal treatments. A two-way Analysis of Variance (ANOVA) and post-hoc Tukey HSD test were conducted to analyze change in retention forces by use of dimples between groups, as well as t test for the effect of abutment height change (α = .05). RESULTS. Results of the two-way ANOVA showed a statistically significant difference in retention force due to the use of dimples, regardless of the types of cements used (P < .001). A significantly higher mean retention forces were observed in the groups with dimples than in the control group, using the post hoc Tukey HSD test (P < .001). Results of t test displayed a statistically significant increase in the retention force with 6.0-mm abutments compared with 3.0-mm abutments (P < .001). The groups without dimples revealed adhesive failure of cements, while the groups with dimples showed mixed failure of cements. CONCLUSION. Use of hemispherical dimples was effective for increasing retention forces of cemented crowns.

Investigation on Hydration Process and Biocompatibility of Calcium Silicate-Based Experimental Portland Cements

  • Lim, Jiwon;Guk, Jae-Geun;Singh, Bhupendra;Hwang, Yun-Chan;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.403-411
    • /
    • 2019
  • In this work, the hydration process and cytotoxicity of lab-synthesized experimental Portland cements (EPCs) were investigated for dental applications. For this purpose, EPCs were prepared using laboratory-synthesized clinker constituents, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). C-A was prepared by the Pechini method, whereas C3S and C2S were synthesized by solid-state reactions. The phase compositions were characterized by X-ray diffraction (XRD) analysis, and the hydration process of the individual constituents and their combinations, with and without the addition of gypsum, was investigated by electrochemical impedance spectroscopy (EIS). Furthermore, four EPC compositions were prepared using the lab-synthesized C-A, C3S, and C2S, and their hydration processes were examined by EIS, and their cytotoxicity to HPC and HIPC cells were tested by performing an XTT assay. None of the EPCs exhibited any significant cytotoxicity for 7 days, and no significant difference was observed in the cell viabilities of ProRoot MTA and EPCs. The results indicated that all the EPCs are sufficiently biocompatible with human dental pulp cells and can be potential substitutes for commercial dental cements.

Comparative assessment of antibacterial activity of different glass ionomer cements on cariogenic bacteria

  • Naik, Rahul Gaybarao;Dodamani, Arun Suresh;Khairnar, Mahesh Ravindra;Jadhav, Harish Chaitram;Deshmukh, Manjiri Abhay
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.278-282
    • /
    • 2016
  • Objectives: Glass ionomer cements (GICs), which are biocompatible and adhesive to the tooth surface, are widely used nowadays for tooth restoration. They inhibit the demineralization and promote the remineralization of the tooth structure adjacent to the restoration, as well as interfere with bacterial growth. Hence, the present study was conducted to assess and compare the antimicrobial activity of three commercially available GICs against two cariogenic bacteria. Materials and Methods: An agar plate diffusion test was used for evaluating the antimicrobial effect of three different GICs (Fuji IX, Ketac Molar, and d-tech) on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). Thirty plates were prepared and divided into two groups. The first group was inoculated with S. mutans, and the second group was inoculated with L. acidophilus. These plates were then incubated at $37^{\circ}C$ for 24 hours. Zones of bacterial growth inhibition that formed around each well were recorded in millimeters (mm). Results: The zones of inhibition for Fuji IX, Ketac Molar, and d-tech on S. mutans were found to be $10.84{\pm}0.22mm$, $10.23{\pm}0.15mm$, and $15.65{\pm}0.31mm$, respectively, whereas those for L. acidophilus were found to be $10.43{\pm}0.12mm$, $10.16{\pm}0.11mm$, and $15.57{\pm}0.13mm$, respectively. Conclusions: D-tech cement performed better in terms of the zone of bacterial inhibition against the two test bacteria, than the other two tested glass ionomers.

Influence of 10-MDP concentration on the adhesion and physical properties of self-adhesive resin cements

  • Shibuya, Kazuhiko;Ohara, Naoko;Ono, Serina;Matsuzaki, Kumiko;Yoshiyama, Masahiro
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2019
  • Objectives: Self-adhesive resin cements contain functional monomers that enable them to adhere to the tooth structure without a separate adhesive or etchant. One of the most stable functional monomers used for chemical bonding to calcium in hydroxyapatite is 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). The aim of this study was to evaluate the influence of the10-MDP concentration on the bond strength and physical properties of self-adhesive resin cements. Materials and Methods: We used experimental resin cements containing 3 different concentrations of 10-MDP: 3.3 wt% (RC1), 6.6 wt% (RC2), or 9.9 wt% (RC3). The micro-tensile bond strength of each resin cement to dentin and a hybrid resin block (Estenia C&B, Kuraray Noritake Dental) was measured, and the fractured surface morphology was analyzed. Further, the flexural strength of the resin cements was measured using the three-point bending test. The water sorption and solubility of the cements following 30 days of immersion in water were measured. Results: The bond strength of RC2 was significantly higher than that of RC1. There was no significant difference between the bond strength of RC2 and that of RC3. The water sorption of RC3 was higher than that of any other cement. There were no significant differences in the three-point bending strength or water solubility among all three types of cements. Conclusions: Within the limitations of this study, it is suggested that 6.6 wt% 10-MDP showed superior properties than 3.3 wt% or 9.9 wt% 10-MDP in self-adhesive resin cement.

Effect of Accelerated Aging on the Color Stability of Dual-Cured Self-Adhesive Resin Cements

  • Kim, Ah-Rang;Jeon, Yong-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo
    • Journal of Korean Dental Science
    • /
    • v.8 no.2
    • /
    • pp.49-56
    • /
    • 2015
  • Purpose: The effect of accelerated aging on color stability of various dual-cured self-adhesive resin cements were evaluated in this study. Materials and Methods: Color stability was examined using three different brands of dual-cured self-adhesive resin cements: G-CEM LinkAce (GC America), MaxCem Elite (Kerr), and PermaCem 2.0 (DMG) with the equivalent color shade. Each resin cement was filled with Teflon mold which has 6 mm diameter and 2 mm thickness. Each specimen was light cured for 20 seconds using light emitting diode (LED) light curing unit. In order to evaluate the effect of accelerated aging on color stability, color parameters (Commission Internationale de l'Eclairage, CIE $L^*$, $a^*$, $b^*$) and color differences (${\Delta}E^*$) were measured at three times: immediately, after 24 hours, and after thermocycling. The $L^*$, $a^*$, $b^*$ values were analyzed using Friedman test and ${\Delta}E^*$ values on the effect of 24 hours and accelerated aging were analyzed using t-test. These values were compared with the limit value of color difference (${\Delta}E^*=3.7$) for dental restoration. One-way ANOVA and Scheff's test (P<0.05) were performed to analyze each ${\Delta}E^*$ values between cements at each test period. Result: There was statistically significant difference in comparison of color specification ($L^*$, $a^*$, $b^*$) values after accelerated aging except $L^*$ value of G-CEM LinkAce (P<0.05). After 24 hours, color difference (${\Delta}E^*$) values were ranged from 2.47 to 3.48 and $L^*$ values decreased and $b^*$ values increased in all types of cement and MaxCem Elite had high color stability (P<0.05). After thermocycling, color change's tendency of cement was varied and color difference (${\Delta}E^*$) values were ranged from 0.82 to 2.87 and G-CEM LinkAce had high color stability (P<0.05). Conclusion: Color stability of dual-cured self-adhesive resin cements after accelerated aging was evaluated and statistically significant color changes occurred within clinically acceptable range.

INFLUENCE OF SURFACE TREATMENTS OF DENIAL ALLOYS ON BOND STRENGTH OF GLASS IONOMER AND POLYCARBOXYLATE CEMENT (치과용 합금의 표면 처리가 글라스아이오노머 시멘트와 폴리카르복실레이트 시멘트의 결합력에 미치는 영향)

  • Lee, Heon-Woo;Woo, Yi-Hyung;Lim, Ho-Nam;Choi, Boo-Byung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.125-142
    • /
    • 1996
  • Bond strength of four different cements to dental casting alloys which were treated with #600 emery, tin-plating, and $50{\mu}m$ sandblasting were evaluated. The alloy specimens were Type III Gold alloy(Degulor C), Palladium-Silver alloy(Pors on 4), Nickel-Chromium(Rexillium III) alloy, which were embedded in acrylic resin disc. The specimens were treated with #600 emery and tin plating, #600 emery and sandblasting, then bonded using Fuji I, Ketac Cem(Glass ionomer cements), Poly F, Livcarbo(Polycarboxylate cements). The specimens were immersed in water for 24 hours and shear bond strengths were evaluated by Instron Machine. Tin plated, sandblasted, and debonded alloy surfaces were observed using scanning electron microscope. On the basis of this study, the following conclusions could be drawn. 1. In the tin plated alloy group, increase in bond strength of glass ionomer cements was statistically insignificant. 2. In the tin plated alloy group, increase in bond strength of polycarboxylate cements was statistically significant, except nickel-chromium alloy. 3. Sandblasted alloy group showed higher bond strength than that of tin-plated alloy group.

  • PDF