Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.4.09

Investigation on Hydration Process and Biocompatibility of Calcium Silicate-Based Experimental Portland Cements  

Lim, Jiwon (Department of Materials Science and Engineering, Chonnam National University)
Guk, Jae-Geun (Department of Materials Science and Engineering, Chonnam National University)
Singh, Bhupendra (CSIR-Advanced Materials and Process Research Institute (AMPRI))
Hwang, Yun-Chan (Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute, Chonnam National University)
Song, Sun-Ju (Department of Materials Science and Engineering, Chonnam National University)
Kim, Ho-Sung (Department of Materials Science and Engineering, Chonnam National University)
Publication Information
Abstract
In this work, the hydration process and cytotoxicity of lab-synthesized experimental Portland cements (EPCs) were investigated for dental applications. For this purpose, EPCs were prepared using laboratory-synthesized clinker constituents, tricalcium silicate (C3S), dicalcium silicate (C2S), and tricalcium aluminate (C3A). C-A was prepared by the Pechini method, whereas C3S and C2S were synthesized by solid-state reactions. The phase compositions were characterized by X-ray diffraction (XRD) analysis, and the hydration process of the individual constituents and their combinations, with and without the addition of gypsum, was investigated by electrochemical impedance spectroscopy (EIS). Furthermore, four EPC compositions were prepared using the lab-synthesized C-A, C3S, and C2S, and their hydration processes were examined by EIS, and their cytotoxicity to HPC and HIPC cells were tested by performing an XTT assay. None of the EPCs exhibited any significant cytotoxicity for 7 days, and no significant difference was observed in the cell viabilities of ProRoot MTA and EPCs. The results indicated that all the EPCs are sufficiently biocompatible with human dental pulp cells and can be potential substitutes for commercial dental cements.
Keywords
Experimental Portland cement; Hydration process; Electrochemical impedance spectroscopy; Cytotoxicity; Dental cement;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Parirokh and M. Torabinejad, "Calcium Silicate-based Cements," pp. 281-332 in Mineral Trioxide Aggregate: Properties and Clinical Applications, Ed. by M. Torabinejad, John Wiley & Sons, Inc., Hoboken, USA, 2014.
2 C. M. Bramante, A. C. C. O. Demarchi, I. G. de Moraes. N. Bernadineli, R. B. Garcia, L. S. W. Spangberg, and M. A. H. Duarte, "Presence of Arsenic in Different Types of MTA and White and Gray Portland Cement," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 106 [6] 909-13 (2008).   DOI
3 J. W. Bullard, H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer, J. S. Schweitzer, K. L. Scrivener, and J. J. Thomas, "Mechanisms of Cement Hydration," Cem. Concr. Res., 41 [12] 1208-23 (2011).   DOI
4 H. F. W. Taylor, Cement Chemistry; Ch. 1, 2nd Ed., Thomas Telford, London, 1997.
5 S. Garrault and A. Nonat, "Hydrated Layer Formation on Tricalcium and Dicalcium Silicate Surfaces: Experimental Study and Numerical Simulations," Langmuir, 17 [26] 8131-38 (2001).   DOI
6 A. D. Santos, E. B. Araujo, K. Yukimitu, J. C. Barbosa, and J. C. S. Moraes, "Setting Time and Thermal Expansion of Two Endodontic Cements," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 106 [3] 77-9 (2008).
7 C. M. Primus, "Comments on Testing for the Presence of Arsenic in MTA and Portland Cement," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 108 [6] 479-80 (2009).   DOI
8 G. De-Deus, M. C. B. de Souza, R. A. S. Fidel, S. R. Fidel, R. C. de Campos, and A. S. Luna, "Negligible Expression of Arsenic in Some Commercially Available Brands of Portland Cement and Mineral Trioxide Aggregate," J. Endod., 35 [6] 887-90 (2009).   DOI
9 M. A. Marciano, M. A. H. Duarte, and J. Camilleri, "Calcium Silicate-based Sealers: Assessment of Physicochemical Properties, Porosity and Hydration," Dent. Mater., 32 [2] e30-40 (2016).
10 B. Hemasathya, C. M. B. Mony, and V. Prakash, "Recent Advances in Root End Filling Materials: A Review," Biomed. Pharmacol. J., 8 219-24 (2015).
11 S. Asgary, S. Shahabi, T. Jafarzadeh, S. Amini, and S. Kheirieh, "The Properties of a New Endodontic Material," J. Endod., 34 [8] 990-93 (2008).   DOI
12 M. Y. Hassaan, “Effect of Gypsum on the Strength Development of Portland Cement by Mossbauer Spectrometry,” Hyperfine Interact., 42 [1-4] 1199-202 (1988).
13 A. Bentur, "Effect of Gypsum on the Hydration and Strength of $C_3S$ Pastes," J. Am. Ceram. Soc., 59 [5-6] 210-13 (1976).   DOI
14 P.-C. Aitcin, Portland Cement Hydration, pp. 146-205 in Binders for Durable and Sustainable Concrete, CRC Press, New York, 2007.
15 Y. Zhang and X. Zhang, "Research on Effect of Limestone and Gypsum on $C_3A$, $C_3S$ and PC Clinker System," Constr. Building Mater., 22 [8] 1634-42 (2008).   DOI
16 H. M. Setbon, J. Devaux, A. Iserentant, G. Leloup, and J. G. Lepince, "Influence of Composition on Setting Kinetics of New Injectable and/or Fast Setting Tricalcium Silicate Cements," Dent. Mater., 30 [12] 1291-303 (2014).   DOI
17 S. W. Chang, W. J. Bae, J. K. Yi, S. Lee, D. W. Lee, K. Y. Kum, and E. C. Kim, "Odontoblastic Differentiation, Inflammatory Response, and Angiogenic Potential of 4 Calcium Silicate-based Cements: Micromega MTA, Pro-Root MTA, RetroMTA, and Experimental Calcium Silicate Cement," J. Endod., 41 [9] 1524-29 (2015).   DOI
18 M. H. Huang, Y. F. Shen, T. T. Hsu, T. H. Huang, and M. Y. Shie, "Physical Characteristics, Antimicrobial and Odontogenesis Potentials of Calcium Silicate Cement Containing Hinokitiol," Mater. Sci. Eng., C, 65 1-8 (2016).   DOI
19 Y. C. Hwang, D. H. Kim, I. N. Hwang, S. J. Song, Y. J. Park, J. T. Koh, H. H. Son, and W. M. Oh, "Chemical Constitution, Physical Properties, and Biocompatibility of Experimentally Manufactured Portland Cement," J. Endod., 37 [1] 58-62 (2011).   DOI
20 K. P. Seong, S. Y. Jeon, B. Singh, J. H. Hwang, and S. J. Song, "Comparative Study of an Experimental Portland Cement and ProRoot MTA by Electrochemical Impedance Spectroscopy," Ceram. Int., 40 [1] 1741-46 (2014).   DOI
21 P. Gu, P. Xie, J. J. Beaudoin, and R. Brousseau, "A.C. Impedance Spectroscopy (I): A New Equivalent Circuit Model for Hydrated Portland Cement Paste," Cem. Concr. Res., 22 [5] 833-40 (1992).   DOI
22 P. Xie, P. Gu, Z. Xu, and J. J. Beaudoin, "A Rationalized A.C. Impedance Model for Microstructural Characterization of Hydrating Cement Systems," Cem. Concr. Res., 23 [2] 359-67 (1993).   DOI
23 A. Gaki, R. Chrysafi, and G. Kakali, "Chemical Synthesis of Hydraulic Calcium Aluminate Compounds Using the Pechini Technique," J. Eur. Ceram. Soc., 27 [2-3] 1781-84 (2007).   DOI
24 C. Villat, V. X. Tran, N. Pradelle-Plasse, P. Ponthiaux, F. Wenger, B. Grosgogeat, and P. Colon, "Impedance Methodology: A New Way to Characterize the Setting Reaction of Dental Cements," Dent. Mater., 26 [12] 1127-32 (2010).   DOI
25 A. Mogus-Milankovic, K. Sklepic, M. Calogovic, M. Marcius, K. Prskalo, B. Jankovic, and Z. Tarle, "Impedance as a Measure of Setting Reaction in Glass Ionomer Cements," J. Non-Cryst. Solids, 389 93-103 (2014).   DOI
26 A. Santic, M. Calogovic, L. Pavic, J. Gladic, Z. Vucic, D. Lovric, K. Prskalo, B. Jankovic, Z. Tarle, and A. Mogus-Milankovic, "New Insights into the Setting Processes of Glass Ionomer Cements from Analysis of Dielectric Properties," J. Am. Ceram. Soc., 98 [12] 3869-76 (2015).   DOI
27 A. N. Christensen, N. V. Y. Scarlett, I. C. Madsen, T. R. Jensen, and J. C. Hanson, "Real Time Study of Cement and Clinker Phases Hydration," Dalton Trans., 2003 [8] 1529-36 (2003).   DOI
28 R. T. Coverdale, B. J. Christensen, H. M. Jennings, T. O. Mason, D. P. Bentz, and E. J. Garboczi, "Interpretation of Impedance Spectroscopy of Cement Paste via Computer Modeling," J. Mater. Sci., 30 [3] 712-19 (1995).   DOI
29 A. P. Kirchheim, V. Fernandez-Altable, P. J. M. Monteiro, D. C. C. D. Molin, and I. Casanova, "Analysis of Cubic and Orthorhombic C3A Hydration in Presence of Gypsum and Lime," J. Mater. Sci., 44 [8] 2038-45 (2009).   DOI
30 I. Sharpley, The Effect of Hydration on the Microstructural Properties of Individual Phases of Ordinary Portland Cement; Master Dissertation, University of London, 2015.
31 E. Breval, "$C_3A$ Hydration," Cem. Concr. Res., 6 [1] 129-37 (1976).   DOI
32 E. Pustovgar, R. P. Sangodkar, A. S. Andreev, M. Palacios, B. F. Chmelka, R. J. Flatt, and J. B. d'Espinose de Lacaillerie, "Understanding Silicate Hydration from Quantitative Analyses of Hydrating Tricalcium Silicates," Nat. Commun., 7 10952 (2016).   DOI
33 S. Goni, F. Puertas, M. S. Hernandez, M. Palacios, A. Guerrero, J. S. Dolado, B. Zanga, and F. Baroni, "Quantitative Study of Hydration of $C_3S$ and $C_2S$ by Thermal Analysis, Evolution and Composition of C-S-H Gels Formed," J. Therm. Anal. Calorim., 102 [3] 965-73 (2010).   DOI
34 N. L. Thomas and D. D. Double, "The Hydration of Portland Cement, $C_3S$ and $C_2S$ in the Presence of a Calcium Complexing Admixture (EDTA)," Cem. Concr. Res., 13 [3] 391-400 (1983).   DOI
35 L. Valentini, M. C. Dalconi, M. Favero, G. Artioli, and G. Ferrari, "In-Situ XRD Measurement and Quantitative Analysis of Hydrating Cement: Implications for Sulfate Incorporation in C-S-H," J. Am. Ceram. Soc., 98 [4] 1259-64 (2015).   DOI
36 G. Kakali, S. Tsivilis, E. Aggeli, and M. Bati, "Hydration Products of $C_3A$, $C_3S$ and Portland Cement in the Presence of $CaCO_3$," Cem. Concr. Res., 30 [7] 1073-77 (2000).   DOI
37 W. L. Kydd, J. I. Nicholls, G. Harrington, and M. Freeman, "Marginal Leakage of Cast Gold Crowns Luted with Zinc Phosphate Cement: An in vivo Study," J. Prosthet. Dent., 75 [1] 9-13 (1996).   DOI
38 M. Rinastiti, "Biomaterials in Dentistry," pp. 183-205 in Biomaterials and Medical Devices, Eds. by F. Mahyudin and H. Hermawan, Springer International Publishing Switzerland 2016.
39 N. Ewoldsen and R. S. Demke, "A Review of Orthodontic Cements and Adhesives," Am. J. Orthod. Dentofacial Orthop., 120 [1] 45-8 (2001).   DOI
40 J. Paul, "Dental Cements- A Review to Proper Selection," Int. J. Curr. Microbiol. App. Sci., 4 [2] 659-69 (2015).
41 T. F. Watson, A. R. Atmeh, S. Sajini, R. J. Cook, and F. Festy, "Present and Future of Glass-Ionomers and Calcium-Silicate Cements as Bioactive Materials in Dentistry: Biophotonics-based Interfacial Analyses in Health and Disease," Dent. Mater., 30 [1] 50-61 (2014).   DOI
42 L. Grech, B. Mallia, and J. Camilleri, "Investigation of the Physical Properties of Tricalcium Silicate Cement-based Root-End Filling Materials," Dent. Mater., 29 [2] e20-8 (2013).   DOI
43 M. S. Baig and G. J. P. Fleming, "Conventional Glass-Ionomer Materials: A Review of the Developments in Glass Powder, Polyacid Liquid and the Strategies of Reinforcement," J. Dent., 43 [8] 897-912 (2015).   DOI
44 M. Torabinejad and D. J. White, "Tooth Filling Material and Method of Use"; U.S. Patent 5411547, 1993.
45 J. M. Meyer, M. A. Cattani-Lorente, and V. Dupuis, "Compomers: Between Glass-Ionomer Cements and Composites," Biomaterials, 19 [6] 529-39 (1998).   DOI
46 I. Radovic, F. Monticelli, C. Goracci, Z. R. Vulicevic, and M. Ferrari, "Self-Adhesive Resin Cements: A Literature Review," J. Adhes. Dent., 10 [4] 251-58 (2008).
47 T. Komabayashi, Q. Zhu, R. Eberhart, and Y. Imai, "Current Status of Direct Pulp-Capping Materials for Permanent Teeth," Dent. Mater. J., 35 [1] 1-12 (2016).   DOI
48 M. Karapinar-Kazandag, B. Basrani, V. T.-K. Yamagishi, A. Azarpazhooh, and S. "Friedman, Fracture Resistance of Simulated Immature Tooth Roots Reinforced with MTA or Restorative Materials," Dent. Traumatol., 32 [2] 146-52 (2016).   DOI
49 J. Camilleri, Mineral Trioxide Aggregate in Dentistry: From preparation to Application; Springer-Verlag Berlin Heidelberg, 2014.
50 H. W. Roberts, J. M. Toth, D. W. Berzins, and D. G. Charlton, "Mineral Trioxide Aggregate Material Use in Endodontic Treatment: A Review of the Literature," Dent. Mater., 24 [2] 149-64 (2008).   DOI
51 M. Parirokh and M. Torabinejad, "Mineral Trioxide Aggregate: A Comprehensive Literature Review-Part I: Chemical, Physical, and Antibacterial Properties," J. Endod., 36 [1] 16-27 (2010).   DOI
52 O. Malkondu, M. K. Kazandag, and E. Kazazoglu, "A review on Biodentine, a Contemporary Dentine Replacement and Repair Material," BioMed Res. Int., 2014 160951 (2014).   DOI
53 T. F. Watson, A. R. Atmeh, S. Sajini, R. J. Cook, and F. Festy, "Present and Future of Glass-Ionomers and Calcium-Silicate Cements as Bioactive Materials in Dentistry: Biophotonics-based Interfacial Analyses in Health and Desease," Dent. Mater., 30 [1] 50-61 (2014).   DOI