• Title/Summary/Keyword: density of paper

Search Result 6,508, Processing Time 0.037 seconds

Properties of Cenosphere Particle in the Fly Ash Generated from the Pulverized Coal Power Plant (석탄화력 발전소에서 생성되는 석탄회에서 Cenosphere 입자의 특성에 관한 연구)

  • Lee, Jung-Eun;Lee, Jae-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1881-1891
    • /
    • 2000
  • Cenosphere particles of different fly ash formed at the pulverized coal power plant were hollow sphere or filled with small particles inside solid particles. And size was relatively larger than other fly ash particles as well as specific gravity was small to suspend in the water. In this paper, it was demonstrated to contain a variety of morphological particle type, and the physical and chemical properties related to the cenosphere and fly ash particles. Furthermore it was estimated the possibility to reuse the cenosphere particles on the base of cenosphere properties. Cenosphere formation resulted from melting of mineral inclusion in coal, and then gas generation inside the molten droplet. As the aluminosilicate particle was progressively heated, a molten surface layer developed around the solid core. Further heating leaded to cause the formation of fine particles at the core. The mass median diameter(MMD) of cenosphere particles was $123.11{\mu}m$ and the range of size distribution was $100{\sim}200{\mu}m$ with single modal. It was represented that specific density was $0.67g/cm^3$ fineness was $1135g/cm^3$. The chemical components of cenosphere were similar to other fly ash including $SiO_2$, $Al_2O_3$, but the amount of the chemical component was different respectively. In the case of fly ash, $SiO_2$ concentration was 54.75%, and $Al_2O_3$ concentration was 21.96%, so this two components was found in 76.71% of the total concentration. But in the case of cenosphere, it was represented that $SiO_2$ concentration was 59.17% and $Al_2O_3$ concentration was 30.16%, so this two components was found in 89.33% of the total concentration. Glassy component formed by the aluminosilicate was high in the cenosphere, so that it was suitable to use insulating heat material.

  • PDF

Implementation of Analog Signal Processing ASIC for Vibratory Angular Velocity Detection Sensor (진동형 각속도 검출 센서를 위한 애널로그 신호처리 ASIC의 구현)

  • 김청월;이병렬;이상우;최준혁
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.65-73
    • /
    • 2003
  • This paper presents the implementation of an analog signal-processing ASIS to detect an angular velocity signal from a vibrator angular velocity detection sensor. The output of the sensor to be charge appeared as the variation of the capacitance value in the structure of the sensor was detected using charge amplifiers and a self oscillation circuit for driving the sensor was implemented with a sinusoidal self oscillation circuit using the resonance characteristics of the sensor. Specially an automatic gain control circuit was utilized to prevent the deterioration of self-oscillation characteristics due to the external elements such as the characteristic variation of the sensor process and the temperature variation. The angular velocity signal, amplitude-mod)Hated in the operation characteristics of the sensor, was demodulated using a synchronous detection circuit. A switching multiplication circuit was used in the synchronous detection circuit to prevent the magnitude variation of detected signal caused by the amplitude variation of the carrier signal. The ASIC was designed and implemented using 0.5${\mu}{\textrm}{m}$ CMOS process. The chip size was 1.2mm x 1mm. In the experiment under the supply voltage of 3V, the ASIC consumed the supply current of 3.6mA and noise spectrum density from dc to 50Hz was in the range of -95 dBrms/√Hz and -100 dBrms/√Hz when the ASIC, coupled with the sensor, was in normal operation.

The Physical and Mechanical Properties of No-Fines Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량조골재(人工輕量粗骨材)를 사용(使用)한 무세골재(無細骨材) 경량(輕量)콘크리트의 물리(物理)·가학적(加學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Cho, Seung Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. Many studies were carried out on the lightweight aggregate concrete in foreign country in the latter half of the 19th century, therefore lightweight aggregate concrete has been used successfully for many years for structural members. The main purpose of the work described in this paper were to establish its physical and mechanical properties of no-fines lightweight concrete using synthetic lightweight coarse aggregates. Test results are summarized as follows ; The water-cement ratio was shown less than 33% in use synthetic lightweight coarse aggregates, unit weights of synthetic lightweight concrete was shown less than $1,800kg/m^3$ and compressive strength was higher than $200kg/m^2$. And the pulse velocity was more than 3,000m/sec. The relationship of compressive strength between unit weight and pulse velocity was shown to be approximately linear.

  • PDF

A Modeling Study of Lake Thermal Dynamics and Turbid Current for an Impact Prediction of Dam Reconstruction (댐 재개발이 호수 수온 및 탁수 거동 변화에 미치는 영향 예측을 위한 모델 연구)

  • Jeong, Seon-A;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.813-821
    • /
    • 2005
  • This paper presents a modeling study of thermal dynamics and turbid current in the Obong Lake, Kangreung. The lake formed by the artificial dam in 1983 for agricultural water supply, is currently under consideration of reconstruction in order to expand the volume of reservoir for water supply and flood control in downstream area. The US Army Corps of Engineers' CE-QUAL-W2, a two-dimensional laterally averaged hydrodynamic and water quality model, was applied to the lake after reconstruction as well as the present lake. The model calibration and verification were conducted against surface water levels and temperature of the lake measured during the years of 2001 and 2003. The model results showed a good agreement with fold measurements both in calibration and verification. Utilizing the validated model, an impact of dam reconstruction on vertical temperature and hydrodynamics were predicted. The model results showed that steep temperature gradient between epilimnion and hypolimnion would be formed during summer, along with extension of cold deep water after reconstruction. During winter and spring seasons, however, the vertical temperature profiles was predicted to be quite similar both before and after reconstruction. This results indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. From the examination of predicted water movements, it was noticed that the upstream turbid current would infiltrate into the interface between metalimnion and hypolimnion and then suspended solids would slowly settle down to the bottom before reconstruction. After reconstruction, however, it was shown that the upstream turbid current would stay longer in metalimnion with similar density due to strong stratification. The model also predicted that dam reconstruction would make suspended solids near the dam location significantly decrease.

Comparison of Behaviour of Straight and Curved Mechanically Stabilized Earth Walls from Numerical Analysis Results (수치해석을 통한 보강토옹벽 직선부와 곡선부의 거동 특성)

  • Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.83-92
    • /
    • 2017
  • This paper deals with numerical analysis of behavior of curved mechanically stabilized earth(MSE) walls with geosynthetics reinforcement. Unlike typical concrete retaining walls, MSE wall enables securing stability of higher walls without being constrained by backfill height and is currently and widely used to create spaces for industrial and residential complexes. The design of MSE walls is carried out by checking external stability, similarly to the external checks of conventional retaining wall. In addition, internal stability check is mandatory. Typical stability check based on numerical analysis is done assuming 2-dimensional condition (plane strain condition). However, according to the former studies of 3-dimensional MSE wall, the most weakest part of a curved geosynthetic MSE wall is reported as the convex location, which is also identified from the studies of the laboratory model tests and field monitoring. In order to understand the behaviour of the convex location of the MSE wall, 2-dimensional analysis clearly reveals its limitation. Furthermore, laboratory model tests and field monitoring also have restriction in recognizing their behaviour and failure mechanism. In this study, 3-dimensional numerical analysis was performed to figure out the behaviour of the curved part of the geosynthetic reinforced wall, and the results of the straight-line and curved part in the numerical analysis were compared and analysed. In addition, the behaviour characteristics at each condition were compared by considering the overburden load and relative density of backfill.

Bioecological Studies in the Upwelling Area of Cheju Island - Standing Stock and Distribution of Pelagic Zooplankton- (제주도 주변 용승역의 생물생태학적 기초 연구 -부유성 동물플랑크톤의 현존량과 분포특성-)

  • GO You-Bong;OH Bong-Cheol;CHOI Young-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.271-278
    • /
    • 1996
  • Daytime surface zooplankton were collected bimonthly from April 1993 to March 1994 at six stations around upwelling and adjacent areas of Cosan, western part of Cheju Island. This paper deals with the occurrence, biomass and some other characteristics of zooplankton in these areas. Copepods had two peaks in the abundance in June $(235\;ind./m^3)$ and November $(301\;ind./m^3)$, but were not especially abundant in upwelling area. While gelatinous organisms seldom occurred in the upwelling, and the outer area with high density of $75\;ind./m^3$ (in June) and $458\;ind./m^3$ (in November) at the intermediate area, seasonal values of biomass with mean of $35.8\;mg/m^3$ were the highest in November and the lowest in January. Abundance of chaetognaths (mainly Sagitta spp.) ranged $15\~37\;inds./m^3$ and carcasses of Sagitta occurred very highly in the upwelling area in June ($54\%$ of total Sagitta organisms) and November $(70.5\%)$. Especially $48\~77\%$ of Sagitta individuals in upwelling area in November was attached by Oncaea mediterranea, O. venusta and Candacia bipinata. Pteropods with shells were sampled only in the upwelling area during strong upwelling season (November, $27\~64\;ind./m^3$), indicating the characteristics of ascending behavioral adaptation from the bottom water by upwelling.

  • PDF

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT (다짐품질관리를 위한 IoT 기반 DCPT 적용 평가)

  • Jisun, Kim;Jinyoung, Kim;Namgyu, Kim;Sungha, Baek;Jinwoo, Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.

Analysis of Characteristics of the Blue OLEDs with Changing HBL Materials (정공 저지층의 재료변화에 따른 청색유기발광소자의 특성분석)

  • Kim, Jung-Yeoun;Kang, Myung-Koo;Oh, Hwan-Sool
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, two types of blue organic light-emitting device were designed. We have analyzed the characteristics of Type I device without a hole blocking layer, and analyzed the characteristics of Type II device using a hole blocking layer of BCP or BAlq materials with 30 ${\AA}$ thickness. We obtained the ITO having the work function value of 5.02 eV using $N_2$ plasma treatment method with the plasma power 200 W. Type I device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/$Alq_3$/LiF/Al:Li, and type II device structure was ITO/2-TNATA/$\alpha$-NPD/DPVBi/HBL/$Alq_3$/LiF/Al:Li. We have analyzed the characteristics of Type I and Type II device. The characteristics of the device were most efficiency on occasion of using a hole blocking layer of BAlq material with 30 ${\AA}$ thickness. Current density was 226.75 $mA/cm^2$, luminance was 10310 $cd/m^2$, Current efficiency was 4.55 cd/A, power efficiency was 1.43 lm/W at an applied voltage of 10V. The maximum EL wavelength of the fabricated blue organic light-emitting device was 456nm. The full-width at half-maximum (FWHM) for the EL spectra was 57nm. CIE color coordinates were x=0.1438 and y=0.1580, which was similar to NTSC deep-blue color with CIE color coordinates of x=0.14 and y=0.08.

Experimental Study on the Engineering Characteristics of Weathering Mudstone -In Pohang area- (이암 황화토의 공학적 특성에 관한 실험적 연구 -포항지역의 이암봉화토를 중심으로-)

  • 김영수;박강우
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.5-16
    • /
    • 1994
  • This paper is concerned with the engineering characteristics weathered mudstone soil in Pohang area. The crushability of weathered Boil can be described in terms of the ratio of surface area(Sw'/Sw). In this study, the characteristics of weathered mudstone soil was investigated by performing teat such as compaction. CBR, permeability, and grain size according to compaction energy. The results are found as follows : (1) In generally, the specific gravity of weathered mudstone soil is very small and optimum moisture content (OMC) is large and maximum dry density is small (2) The CBR value increases as the compaction energy increases, but this value decreses from D -2 compaction(26kg.cm/cm3). the swelling ratio increases the npaction energy to 20.6kg.cm/cm" and decreases in all compaction energy from 20.6kg.cm/cm3 (3) As the compaction energy is small, the change of permeability due to water content is large and the difference between minimum coefficient of permeability and coefficient of permeability at OMC is large, but the difference is small as the compaction energy increases (4) The decrease of permeability due to the decrease of void ratio and the increase of ratio of surface area is caused by the crush of particle due to the increase in compaction energy. Especially, the compaction energy is smaller, the change of the ratio of surface area to the coefficient of permeability is larger.rger.

  • PDF

S-FDS : a Smart Fire Detection System based on the Integration of Fuzzy Logic and Deep Learning (S-FDS : 퍼지로직과 딥러닝 통합 기반의 스마트 화재감지 시스템)

  • Jang, Jun-Yeong;Lee, Kang-Woon;Kim, Young-Jin;Kim, Won-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.50-58
    • /
    • 2017
  • Recently, some methods of converging heterogeneous fire sensor data have been proposed for effective fire detection, but the rule-based methods have low adaptability and accuracy, and the fuzzy inference methods suffer from detection speed and accuracy by lack of consideration for images. In addition, a few image-based deep learning methods were researched, but it was too difficult to rapidly recognize the fire event in absence of cameras or out of scope of a camera in practical situations. In this paper, we propose a novel fire detection system combining a deep learning algorithm based on CNN and fuzzy inference engine based on heterogeneous fire sensor data including temperature, humidity, gas, and smoke density. we show it is possible for the proposed system to rapidly detect fire by utilizing images and to decide fire in a reliable way by utilizing multi-sensor data. Also, we apply distributed computing architecture to fire detection algorithm in order to avoid concentration of computing power on a server and to enhance scalability as a result. Finally, we prove the performance of the system through two experiments by means of NIST's fire dynamics simulator in both cases of an explosively spreading fire and a gradually growing fire.