Browse > Article

Implementation of Analog Signal Processing ASIC for Vibratory Angular Velocity Detection Sensor  

김청월 (안동대학교 사범대학 전기전자공학교육과)
이병렬 (삼성종합기술원 MEMS Lab.)
이상우 (삼성종합기술원 MEMS Lab.)
최준혁 (삼성종합기술원 MEMS Lab.)
Publication Information
Abstract
This paper presents the implementation of an analog signal-processing ASIS to detect an angular velocity signal from a vibrator angular velocity detection sensor. The output of the sensor to be charge appeared as the variation of the capacitance value in the structure of the sensor was detected using charge amplifiers and a self oscillation circuit for driving the sensor was implemented with a sinusoidal self oscillation circuit using the resonance characteristics of the sensor. Specially an automatic gain control circuit was utilized to prevent the deterioration of self-oscillation characteristics due to the external elements such as the characteristic variation of the sensor process and the temperature variation. The angular velocity signal, amplitude-mod)Hated in the operation characteristics of the sensor, was demodulated using a synchronous detection circuit. A switching multiplication circuit was used in the synchronous detection circuit to prevent the magnitude variation of detected signal caused by the amplitude variation of the carrier signal. The ASIC was designed and implemented using 0.5${\mu}{\textrm}{m}$ CMOS process. The chip size was 1.2mm x 1mm. In the experiment under the supply voltage of 3V, the ASIC consumed the supply current of 3.6mA and noise spectrum density from dc to 50Hz was in the range of -95 dBrms/√Hz and -100 dBrms/√Hz when the ASIC, coupled with the sensor, was in normal operation.
Keywords
Angular Velocity; Detection; Sensor; Analog; ASIC;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 전국진. 'MEMS의 기술 개요와 동향', 전자공학회지, 제28권, 제3호, 19-29쪽, 2001년 3월   과학기술학회마을
2 B. L Lee, et al., 'A Novel Resonant Accelerometer: Electrostatic Stiffness Type', International Conference on Solid State Sensors and Actuator(Transducer '99), pp. 1546-1549
3 R. F. Coughlin and F. F. Driscoll, 'Operational Amplifers and Linear Integrated Circuits', Prentice Hall, pp. 137-139, 2001
4 Murata, 'Piezoelectric Vibrating Gyroscopes (GYROSTAR) ENC Serise', Murate PDF catalog(S42E3.pdf), 2003
5 임근배, 윤대성, 'MEMS의 기술과 차세대 생물산업', 전자공학회지, 제28권, 제3호, 43-50쪽, 2001년 3월   과학기술학회마을
6 이종현, 'MEMS의 기술과 광통신·부품산업', 전자공학회지, 제28권, 제3호, 51-61쪽, 2001년 3월
7 박효덕, 조남규, 'MEMS기술과 차세대 자동차산업', 전자공학회지, 제28권, 제3호, 80-96쪽, 2001년 3월
8 Y. S Oh, B. L Lee, et al, 'A Surface Micromachined tunable vibratory gyroscope', MEMS'97, Nagoya, Japan, pp. 272-277, 1997   DOI
9 이병렬, '마이크로 관성센터 기술', 전자공학회지, 제28권, 제10호, 39-44쪽, 2001년 10월   과학기술학회마을
10 K. D Jung, et al., 'Reverse Surface Microma-chined Silicon Inertial Sensor', Proceedings of the 1st IMS, 19-21 April 2001
11 K. Y Park, H. S Jeong, et al., 'Lateral Gyroscope Suspended by Two Gimbals through High Aspect Ratio Etching', Transducer '99, FL, USA, pp. 612-617, 1999
12 C. C. Nguyen and R. T. Howe, 'An Integrated CMOS Micromechanical Resonator High-Q Oscillator', IEEE J. Solid-State Circuits, Vol. 34, pp. 440-455, Apr. 1999   DOI   ScienceOn
13 J. A. Green, S. J. Sherman, et al., 'Single-Chip Surface-Micromachined Integrated Gyroscope with 50o/hour root Allan Variance', ISSCC 2002, 346-347.,2002
14 W. A. Clark, 'Micormachined Z-axis Vibratory Rate Gyroscope', United States Patent, patent no. 5999233, Nov. 1999