• Title/Summary/Keyword: density function

Search Result 3,246, Processing Time 0.033 seconds

Defect Detection algorithm of TFT-LCD Polarizing Film using the Probability Density Function based on Cluster Characteristic (TFT-LCD 영상에서 결함 군집도 특성 기반의 확률밀도함수를 이용한 결함 검출 알고리즘)

  • Gu, Eunhye;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.3
    • /
    • pp.633-641
    • /
    • 2016
  • Automatic defect inspection system is composed of the step in the pre-processing, defect candidate detection, and classification. Polarizing films containing various defects should be minimized over-detection for classifying defect blobs. In this paper, we propose a defect detection algorithm using a skewness of histogram for minimizing over-detection. In order to detect up defects with similar to background pixel, we are used the characteristics of the local region. And the real defect pixels are distinguished from the noise using the probability density function. Experimental results demonstrated the minimized over-detection by utilizing the artificial images and real polarizing film images.

Development of Probability Theory based Dynamic Travel Time Models (확률론적 이론에 기초한 동적 통행시간 모형 정립)

  • Yang, Chul-Su
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.83-91
    • /
    • 2011
  • This paper discusses models for estimating dynamic travel times based on probability theory. The dynamic travel time models proposed in the paper are formulated assuming that the travel time of a vehicle depends on the distribution of the traffic stream condition with respect to the location along a road when the subject vehicle enters the starting point of a travel distance or with respect to the time at the starting point of a travel distance. The models also assume that the dynamic traffic flow can be represented as an exponential distribution function among other types of probability density functions.

Measurements of Droplet Sizes and Velocities with Optimum Probability Density Function in a Transient Liquefied Butane Spray (액상부탄 간헐분무의 액적 크기 및 속도 측정과 최적 확률분포 연구)

  • Kim, J.H.;Kim, J.W.;Koo, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.5 no.1
    • /
    • pp.30-40
    • /
    • 2000
  • The characteristics of liquefied butane spray are expected to be different from conventional diesel fuel spray, because a kind of flash boiling spray is expected when the back pressure is below the saturated vapor pressure of the butane(0.23MPa at 298K). The ambient pressure was held at a pressure above(0.37MPa) and below(0.15MPa) the fuel vapor pressure. The axial velocities, radial velocities, and size distributions in butane sprays were measured with PDPA(Phase Doppler Particle Analyzer) system. The PDPA measurement showed a smaller SMD at the 0.15MPa chamber pressure, compared to the 0.37MPa case. Log-hyperbolic density function for the droplets size distribution can be fitted to the experimental results of a liquefied butane spray.

  • PDF

Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach (MEPDF를 이용한 와류 연소실 내부 예혼합 화염의 대 와동 모사)

  • Kim, Namsu;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.

ALGEBRAIC ENTROPIES OF NATURAL NUMBERS WITH ONE OR TWO PRIME FACTORS

  • JEONG, SEUNGPIL;KIM, KYONG HOON;KIM, GWANGIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.205-221
    • /
    • 2016
  • We formulate the additive entropy of a natural number in terms of the additive partition function, and show that its multiplicative entropy is directly related to the multiplicative partition function. We give a practical formula for the multiplicative entropy of natural numbers with two prime factors. We use this formula to analyze the comparative density of additive and multiplicative entropy, prove that this density converges to zero as the number tends to infinity, and empirically observe this asymptotic behavior.

Derivation of the Expected Busy Period U sing its Pseudo Probability Density Function for a Controllable M/G/l Queueing Model Operating Under the Max (N, T, D) Policy (가상확률밀도함수를 사용하여 Max(N, T, D) 운5방침이 적용되는 조정가능한 M/G/1 대기모형의 busy period의 기대값 유도)

  • Rhee, Hahn-Kyou;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.4
    • /
    • pp.86-92
    • /
    • 2008
  • The expected busy period for the controllable M/G/1 queueing model operating under the triadic Max (N, T, D) policy is derived by using a new concept so called "the pseudo probability density function." In order to justify the proposed approaches for the triadic policy, well-known expected busy periods for the dyadic policies are recovered from the obtained result as special cases.

Identification of the associations between genes and quantitative traits using entropy-based kernel density estimation

  • Yee, Jaeyong;Park, Taesung;Park, Mira
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.17.1-17.11
    • /
    • 2022
  • Genetic associations have been quantified using a number of statistical measures. Entropy-based mutual information may be one of the more direct ways of estimating the association, in the sense that it does not depend on the parametrization. For this purpose, both the entropy and conditional entropy of the phenotype distribution should be obtained. Quantitative traits, however, do not usually allow an exact evaluation of entropy. The estimation of entropy needs a probability density function, which can be approximated by kernel density estimation. We have investigated the proper sequence of procedures for combining the kernel density estimation and entropy estimation with a probability density function in order to calculate mutual information. Genotypes and their interactions were constructed to set the conditions for conditional entropy. Extensive simulation data created using three types of generating functions were analyzed using two different kernels as well as two types of multifactor dimensionality reduction and another probability density approximation method called m-spacing. The statistical power in terms of correct detection rates was compared. Using kernels was found to be most useful when the trait distributions were more complex than simple normal or gamma distributions. A full-scale genomic dataset was explored to identify associations using the 2-h oral glucose tolerance test results and γ-glutamyl transpeptidase levels as phenotypes. Clearly distinguishable single-nucleotide polymorphisms (SNPs) and interacting SNP pairs associated with these phenotypes were found and listed with empirical p-values.

Kullback-Leibler Information of the Equilibrium Distribution Function and its Application to Goodness of Fit Test

  • Park, Sangun;Choi, Dongseok;Jung, Sangah
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • Kullback-Leibler (KL) information is a measure of discrepancy between two probability density functions. However, several nonparametric density function estimators have been considered in estimating KL information because KL information is not well-defined on the empirical distribution function. In this paper, we consider the KL information of the equilibrium distribution function, which is well defined on the empirical distribution function (EDF), and propose an EDF-based goodness of fit test statistic. We evaluate the performance of the proposed test statistic for an exponential distribution with Monte Carlo simulation. We also extend the discussion to the censored case.

SUBDWARF LUMINOSITY FUNCTION

  • Lee, Sang-Gak
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.2
    • /
    • pp.161-171
    • /
    • 1991
  • We have derived the luminosity function for subdwarfs on the basis of the proper motion data in LHS Catalogue, utilizing the reduced proper motion diagram for the selection of sub dwarfs and the hybrid method combining the mean absolute magnitude method and V/$V_m$ method to estimate the distance and density of subdwarfs. The luminosity function found here is almost flat, showing a very slow increase up to $M_V\;=\;9$ or $M_B\;=\;10$, and the overall halo density is larger than those derived by Schmidt (1975), Chiu (1980), Reid (1984), Lee (1985), and Dawson (1986), but smaller than that by Eggen (1983). Comparison with 1/100 of disk stellar luminosity function implies that no conclusive dip in the halo luminosity function is found.

  • PDF

Design of Random Number Generator for Simulation of Speech-Waveform Coders (음성엔코더 시뮬레이션에 사용되는 난수발생기 설계)

  • 박중후
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.3-9
    • /
    • 2001
  • In this paper, a random number generator for simulation of speech-waveform coders was designed. A random number generator having a desired probability density function and a desired power spectral density is discussed and experimental results are presented. The technique is based on Sondhi algorithm which consists of a linear filter and a memoryless nonlinearity. Several methods of obtaining memoryless nonlinearities for some typical continuous distributions are discussed. Sondhi algorithm is analyzed in the time domain using the diagonal expansion of the bivariate Gaussian probability density function. It is shown that the Sondhi algorithm gives satisfactory results when the memoryless nonlinearity is given in an antisymmetric form as in uniform, Cauchy, binary and gamma distribution. It is shown that the Sondhi algorithm does not perform well when the corresponding memoryless nonlinearity cannot be obtained analytically as in Student-t and F distributions, and when the memoryless nonlinearity can not be expressed in an antisymmetric form as in chi-squared and lognormal distributions.

  • PDF