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Introduction 

Over the past decades, genetic association studies have been conducted to identify ge-
netic variants associated with various traits or diseases [1–3]. Genetic susceptibility for 
many complex diseases is often analyzed using diagnosis-based categories, although the 
underlying phenotypes are usually quantitative [4,5]. A genomic association, however, 
does not necessarily require any classification. Therefore, the intrinsic features of an as-
sociation may be better reflected by entering the quantitative distributions into the asso-
ciation measurement in their original form. Furthermore, some traits, such as human 
height, are intrinsically continuous; therefore, meaningful thresholds for categorization 
may not exist. 
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Genetic associations have been quantified using a number of statistical measures. Entro-
py-based mutual information may be one of the more direct ways of estimating the asso-
ciation, in the sense that it does not depend on the parametrization. For this purpose, both 
the entropy and conditional entropy of the phenotype distribution should be obtained. 
Quantitative traits, however, do not usually allow an exact evaluation of entropy. The esti-
mation of entropy needs a probability density function, which can be approximated by ker-
nel density estimation. We have investigated the proper sequence of procedures for com-
bining the kernel density estimation and entropy estimation with a probability density 
function in order to calculate mutual information. Genotypes and their interactions were 
constructed to set the conditions for conditional entropy. Extensive simulation data created 
using three types of generating functions were analyzed using two different kernels as well 
as two types of multifactor dimensionality reduction and another probability density ap-
proximation method called m-spacing. The statistical power in terms of correct detection 
rates was compared. Using kernels was found to be most useful when the trait distribu-
tions were more complex than simple normal or gamma distributions. A full-scale genomic 
dataset was explored to identify associations using the 2-h oral glucose tolerance test re-
sults and γ-glutamyl transpeptidase levels as phenotypes. Clearly distinguishable sin-
gle-nucleotide polymorphisms (SNPs) and interacting SNP pairs associated with these phe-
notypes were found and listed with empirical p-values. 
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Multifactor dimensionality reduction (MDR) has been success-
fully used as a genomic association measurement method [6]. It 
can identify interacting genes, and it was originally intended for bi-
nary outcomes. This method uses the classification accuracy, mea-
sured by constructing a confusion matrix, to quantify an associa-
tion. Variants of MDR have emerged. For ordered categorical traits 
with more than two response categories, ordinal MDR uses Kend-
all’s tau-b as an association measure [7]. For quantitative traits, 
generalized MDR (GMDR) and quantitative MDR (QMDR) 
have been proposed. Inheriting the original MDR, the common 
strategy of these methods is to classify the trait values correspond-
ing to a genotype as a binary state. GMDR utilizes a score statistic 
after adjusting covariates [8]. QMDR uses T-statistics as the asso-
ciation measure and compares the mean values for each cell with 
the overall mean to classify the trait distribution [9]. 

Entropy-based methods of analyzing genomic associations have 
emerged as another stream of research [10]. According to infor-
mation theory, mutual information (MI) is defined as the amount 
of information, or entropy, shared by two random variables 
[11,12]. In analyses of genomic associations, this concept can be 
translated into the strength of the association between the geno-
type and phenotype [10]. MI is regarded as a generalized correla-
tion measure in the sense that it is not limited to linear dependence 
[13]. MI has been evaluated as a measure for associations and ex-
tended to machine learning [14]. The estimation of MI between 
discrete or categorical random variables is well established. How-
ever, when either of two variables is quantitative, estimating MI is 
not at all straightforward [15]. MI-based test statistics for gene-
gene interactions associated with discrete trait values have been 
proposed [16,17]. Quantitative traits have also been considered 
with generalized MI, referred to as “k-way interaction informa-
tion,” but with the assumption of a normal distribution [18]. A 
more direct estimation of MI with quantitative traits has been sug-
gested using the m-spacing entropy measure [19]. This method 
estimates MI utilizing the observed spacing of order m between 
quantitative trait values, without any assumption or classification 
attempt. The probability density tends to be inversely proportion-
al to the spacing between data points. M-spacing elaborates upon 
this notion by considering the spacings beyond the immediately 
adjacent points, resulting in more accurate estimations of probabil-
ity density. This is the basis, in turn, for a more precise determina-
tion of entropy and MI. 

Here, we propose another way of analyzing genomic associa-
tions for quantitative traits based on the kernel density estimation 
(KDE). KDE estimates a distribution function by summing ker-
nels over the domain, or the observed data points. Kernels are de-

signed to be normalized and non-negative functions, symmetric 
around each data point [20]. MI would be obtained with these es-
timated distribution functions of quantitative traits. We examined 
the KDE method by varying the kernels and using adaptive band-
width for them to determine the most proper way of combining 
KDE and MI estimations for genomic association data. Associa-
tions with gene-gene interactions were investigated with quantita-
tive traits of simulation and real datasets. Statistical power was ana-
lyzed in terms of the correct detection rates for extensive sets of 
simulation data obtained by KDE, two types of MDR, and 
m-spacing. This comparison showed that using kernels may be 
more useful than other methods when the trait distributions are 
more complex than simple normal or gamma distributions. A full-
scale genomic dataset with the phenotype of the 2-h oral glucose 
tolerance test was selected from the Korean Association Resource 
(KARE) project [21], because the distributions were found to be 
complex. Additionally, γ-glutamyl transpeptidase (γ-GTP) levels 
were explored as a phenotype. Single-nucleotide polymorphisms 
(SNPs) and interacting SNP pairs associated with this phenotype 
were clearly identified and listed with empirical p-values. 

Methods 

MI between the genotype and the quantitative phenotype is inves-
tigated to establish a genomic association. Measuring MI requires 
estimating the entropy and conditional entropy. To estimate them 
for a quantitative trait, the probability density function (pdf ) 
needs to be estimated first. KDE has been adopted to estimate the 
pdf for distributions with or without a boundary effect. Fig. 1A 
shows the use of an additional factor JT with the kernel when the 
variable is transformed. Fig. 1B visualizes when to apply KDE to 
genomic data to obtain MI.  

Definition of entropy and MI 
When the probability density function, f(x), is known, the entro-
py, H, is defined in the integral form of the pdf as below, which is 
also called the differential entropy [22]. 

(1)

MI is defined as the difference between the entropy of one set 
and that conditioned by the other set, where two sets are inter-
changeable. MI can quantify the association between two sets 
[11], which, in the scope of this paper, would be paired observa-
tions of the phenotype and genotype values. MI is obtained by the 
difference between the two entropies above. 

( ) ( ) ( )lnH f f x f x dx= −∫

https://doi.org/10.5808/gi.220332 / 11

Yee J et al. • Genetic associations by kernel density estimation



(2)

, where H(P) is the amount of information contained in the pheno-
type distribution [10]. The conditional entropy H(P|G) measures 
the amount of information still necessary to describe the pheno-
type distribution when the genotype is known. Equivalently, it is 
the amount of information that the phenotype distribution does 
not share with the genotype. Therefore, MI in Eq. (2) quantifies 
the amount of information that the phenotype and genotype distri-
butions share. The more information they share, the more strongly 
the genetic information contributes to the phenotype. 

Entropy by KDE 
To estimate the entropy in (1), we first need to estimate f(x) from 
the data [22]. Let {Xi} denote the set of random samples drawn 
from a distribution with density f. Then, the entropy H can be esti-
mated as follows. 

(3)  

The estimation of entropy now becomes equivalent to the estima-
tion of f (i.e., a pdf). For that purpose, KDE can be used to esti-
mate f. A simple and known function K, called a kernel, may be de-
fined around each data point and summed for the estimation of a 
pdf, as shown below [23]. 

(4)  

Here K(u) should be non-negative and symmetric for our pur-
pose, while satisfying the normalization condition. The require-
ment for a kernel function that it should be normalized in the 
range of its argument also ensures the normalization of the pdf 
[20]. It should be noted that at an arbitrary point x, the pdf is de-
termined by the sum of n individual kernel functions whose cen-
ters are at x =  Xj. The width of a kernel function is controlled by 
the bandwidth h. 

Kernels for a distribution with a boundary 
Some phenotype distributions have distinct boundaries. For ex-
ample, let us examine the phenotype of γ-GTP levels, as shown in 
Fig. 2B. Unlike usual Gaussian distributions, which can be found 
with weight or blood pressure measurements, this histogram is 
crowded near the boundary value of zero. A skewed distribution 
like this can be modeled with a gamma distribution, as presented 
in Fig. 2A. The range supported is (0, ∞). As suggested in Eq. (4), 
KDE estimates the pdf as the sum of kernels, which is symmetric 
around each data point. In Fig. 2C, a few kernels are shown along 
with the estimated pdf. When the density value is significant near 
the boundary, as in this case, the estimated pdf inevitably has tails 
outside the supported range. The normality of the pdf is then bro-

Fig. 1. Flow charts for the kernel density estimation (KDE) (A) and the mutual information (MI) (B). Entropy, H, can be estimated from a 
dataset, {Xi}, sampled from a distribution of density f. Transformed kernel should be used when the boundary effect is not negligible. MI 
can be obtained by applying KDE to phenotype (P) and genotype (G) data and then combining the results.
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ken, and the estimated shape of the pdf may not reach the real dis-
tribution. This eventually results in an inaccurate estimation of MI. 
One remedy for this is to use a kernel in the following form [24]. 

(5)  

Here, the kernel is symmetric in ln x space, whose range is (−∞, 
∞). The different Jacobian between Eqs. (4) and (5) should be 
noted; this can be obtained straightforwardly from the fact that the 
normality of the kernel function is defined as below. 

(6)

Transforming back to x space, the estimated pdf fits better, as 
shown in Fig. 2D. The kernels will not be symmetric in x space, 
and the shape will be dependent on the data point Xj, around 
which the kernels are estimated. 

Choice of the kernel function 
Several types of kernel functions have been proposed that satisfy 
the symmetric and non-negative conditions imposed for our pur-
pose [23]. Among them, the Epanechnikov kernel has the highest 
efficiency, which means that it has the smallest asymptotic mean 
integrated squared error over other kernels when the number of 
data points is the same [23]. It has a parabolic form as below. 

Fig. 2. Estimation of density for the distributions with boundary. Gamma distribution, which has boundary at 0, is shown (A). Histogram of 
γ-glutamyl transpeptidase (γ-GTP) that follows such distributions is plotted (B). Kernels in x-space would always estimate a tailed density 
outside the boundary as shown (C), which should lead to the estimation of entropy for the more diffused distribution. Corrected density (D) 
fits better without crossing the boundary.
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(7) 

The indicator function, 1(..), is used. Meanwhile, the Gaussian 
kernel has about 5% lower efficiency, which means it requires 5% 
more data points to achieve the same error level as the Epanech-
nikov kernel. However, the Gaussian kernel is widely used because 
of its mathematical convenience. It has the form given below. 

(8)  

The Epanechnikov kernel is also more advantageous for computa-
tion due to its relative simplicity, which becomes an important fac-
tor with genomic data containing an extensive set of genotypes 
[25]. We examined these two kernels. 

Determination of bandwidth 
As can be seen in Eqs. (4) and (5), the bandwidth h should be de-
termined to make arguments for kernel functions. It also plays the 
role of a weight factor for the sum of kernels at each point. The val-
ue of bandwidth can be deduced by setting the derivative of the as-
ymptotic mean integrated squared error with respect to the band-
width as zero [26]. However, it has a differentiation term of the 
pdf, which is obviously unknown. An acknowledged replacement 
is the sample standard deviation, σ̂, and a constant specific to the 
kernel used [26]. Its expression is as follows, where n is the num-
ber of data points. 

(9) 

The bandwidth in Eq. (9) now depends on the shape of data dis-
tribution and the kernel shape. We used ν =  2 and C2 = 2.34, 1.06 
for the kernels in Eqs. (7) and (8), respectively.  

MI by entropy and conditional entropy 
Combining Eq. (3) with Eqs. (4) or (5), the entropy for the whole 
phenotype, P, can be estimated as follows.  

(10)

For computing the conditional entropy, the phenotype set 
needs to be divided according to the corresponding genotypes, 
represented as {P|G = g}. Let g indicate each genotype and d be 
used for the order of genomic interaction. Because each SNP has 

three different forms (AA, Aa, and aa), d-order interacting SNPs 
should have 3d possible genotypes. The conditional entropy can 
now be obtained by summing the above KDE calculations on each 
subset, weighted by the subset size, as below.

(11)

Estimation of p-values 
If statistical significance of the obtained MI is required, the p-value 
is estimated by random permutation of the trait values among 
samples to make the resultant dataset satisfy the null hypothesis. 
The maximum MI value of all genotype combinations from this 
dataset would form a single point of the null distribution of MI 
constructed by repeated random permutations. Counting the 
number of points in this null distribution that are larger than or 
equal to the observed MI would give the desired empirical p-value. 

Results 

Generation of simulation data 
The application of KDE to a genomic association study and its 
performance were examined with a simulated dataset. Simulated 
data were generated based on the Velez models [27], which as-
sume 2-order SNP interactions for binary phenotypes. Penetrance 
values, tij, were tabulated for each of the nine possible genotype 
combinations of two interacting SNPs, along with specified values 
of the minor allele frequency (MAF) and heritability. To generate 
quantitative values, we took the penetrance as the mean of the dis-
tribution from which the trait value was sampled. Three types of 
distributions were considered. The first type was a normal distri-
bution, as given below. 

(12) 

Another was a gamma distribution, shown below.  

(13)

It should be noted how the penetrance, tij, was used in the distribu-
tion functions above, while σ remained a free parameter. When the 
penetrance, tij, was larger or smaller than the overall average value, 
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the class of the samples for the genotype ij was assigned as high or 
low risk, respectively. To simulate various situations, three distinct 
values of σ, (0.8, 1.0, 1.2), were assigned for high- and low-risk sub-
groups, independently establishing nine different cases. To further 
investigate the trait distribution, a third type of trait value sampling 
was done from a mixed form as shown below, with α set to 0.2.  

(14)

The high-risk term in Eq. (14) should not be confused with the 
sum of normally distributed random variables. In that case, it 
would make just another normal distribution. Here, the high-risk 
term was intended to be a Gaussian mixture distribution with dou-
ble peaks. With Eq. (14), the trait value was generated from a bi-
modal distribution if tij was found to be larger than the overall aver-
age (i.e., a high-risk case). There were also nine combinations of σ. 
The number of SNPs was taken as 20 with a single causal pair and 
400 samples. The Velez model has seven heritability values, each 
of which has five different penetrance tables for two different 
MAFs. For each of those 70 models, along with nine σ combina-
tions, 100 simulations were conducted, yielding 70 × 90 × 100 files 
for the three distribution schemes, respectively. In all, for each of 
the seven heritability values, simulated datasets generated from 10 
models (five penetrance tables and two MAFs), with nine varia-
tions in high- and low-risk samplings from the three types of distri-
butions were considered. 

Demonstration of MI 
Fig. 3 shows how MI works for genomic data. The simplest form 
of simulation data following Eq. (12), with large heritability (0.4), 
a MAF of 0.2, and a fixed σ of 1.0 was used. The leftmost three ver-
tical lines were for the intended causal SNP pair that was simulated 
as having strong association. The rightmost three lines were for an 
arbitrarily chosen SNP pair that was supposed to have little associ-
ation. KDE was performed on these two SNP pairs with Epanech-
nikov and Gaussian kernels. Analytic calculations for MI were also 
conducted, taking advantage of the fact that the analytic form of 
entropy for a normal distribution was given as In                . MI val-
ues were represented by the length of the vertical bar connecting 
H(P) and H(P|G) values, as defined in Eq. (2). Compared to the 
unassociated MI, the MI for the associated pair was found to be 
quite large. Their distinction was clear. The Epanechnikov kernel 
yielded a closer MI to the analytic result, which should be very 
close to the true value, than the Gaussian kernel.  

Comparison of hit ratios 
In Fig. 4, the empirical power of our KDE method to identify the 
causal pair was investigated with the simulation data. The hit ratios 
using the Epanechnikov (KDE-E) and Gaussian (KDE-G) kernels 
were compared with the results from other methods (m-spacing, 
QMDR, and GMDR). Each point in the plot with respect to heri-
tability was obtained from calculations of the hit ratio, taking all of 
the simulation conditions into consideration. Datasets from the 
normal and mixed generation functions were analyzed using the 
“no boundary effect” options in Eqs. (10) and (11), while those 
from the gamma generation function were analyzed as having a 
boundary effect. The results are plotted separately in (A)–(C). 
The two kernels showed quite similar performances throughout 
all the conditions. Considering the simplicity of the mathematical 
form, therefore, the Epanechnikov kernel should be chosen when-
ever the amount of calculation is heavy. For the normal and mixed 
cases in Fig. 4A and 4C, m-spacing results overlapped with the 
KDE results in high-heritability regions, although small discrepan-
cies might exist for low-heritability regions. However, GMDR and 
QMDR showed somewhat different performances. In these two 
cases, shown in Fig. 4A and 4C, only QMDR for high-heritability 
regions with a normal distribution outperformed KDE, while 
GMDR showed the lowest performance regardless of the condi-

Fig. 3. Demonstration of the association strength of a simulated 
genomic data obtained by kernel density estimation. Length of the 
vertical line between the paired points of H(P) and H(P|G) represents 
the association strength measure by mutual information.
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tions. In Fig. 4B, for the phenotypes whose values were drawn 
from gamma distributions, KDE outperformed all other methods, 
regardless of the choice of kernels. GMDR performed best only in 
the two highest-heritability regions. QMDR and GMDR showed 
an obvious pattern of performance reversal depending on the data 
generation schemes. GMDR uses a scoring system, and m-spacing 
does not assume any pdf shape. Therefore, their performance de-
pends little on the shape of the distributions. In contrast, QMDR 
tries dichotomization, which may take more advantage of symmet-
ric than asymmetric distributions, such as gamma distribution. 
This may explain the performance reversal between them. 

KDE is also a non-parametric method, as is m-spacing. With a 
symmetric distributions in Fig. 4A and 4C, KDE’s performance was 
found to overlap with that of m-spacing, while showing slightly bet-
ter performance in the low-heritability region. With a heavily 
skewed distribution, as in Fig. 4B, KDE showed consistently better 
performance, although not substantially so, throughout the herita-
bility regions. A gamma distribution simulation was designed such 

that the shape should be distinct from the normal case, with the 
choice of σ in Eq. (13). Since tij in that equation is penetrance, 
which should be smaller than 1, the resultant gamma distribution 
would have a shape parameter, k, smaller than the scale parameter, θ, 
in most cases because of the used σ values. This condition results in 
a quite skewed gamma distribution, as intended, giving rise to the 
boundary effect. KDE, as designed, showed consistency and better 
performance than m-spacing, QMDR, and GMDR, with the ex-
ception mentioned above, regardless of the distribution shapes. 

Type I error rate 
To examine the type I error rate, the same process used to build 
the simulation dataset was adopted to construct the null dataset, 
except that no causal pairs were intended. With the null dataset, 
the empirical p-value was evaluated by permuting the phenotype 
part 1,000 times. The p-value evaluation was repeated with the en-
tire null dataset. Counting the number of instances in which the 
p-value obtained turned out to be smaller than the significance 

Fig. 4. (A–C) Comparison of the hit ratios. Correct detection rates of the causal pair are compared with other method with respect to 
the heritability. Plots are separated by the generation schemes of the simulation data examined. KDE, kernel density estimation; QMDR, 
quantitative multifactor dimensionality reduction; GMDR, generalized multifactor dimensionality reduction.
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level, which was taken as 0.05, indicates the type I error. Table 1 
presents the results. For heritability variation, a total of 9,000 (9 
high-low risk deviation combinations ×  1,000 repetitions) p-val-
ues were produced to estimate the type I error rate for each cell in 
this table, while for the MAF cells, 31,500 (7 heritability values ×  
5 penetrance values ×  1,000 repetitions) p-values were used. The 
Epanechnikov kernel was employed. The estimated type I error rate 
was close to 5% (range, 4.6% to 5.8%), as would be expected if our 
method preserved this rate. The preservation of type I error by our 
method was verified over MAF and heritability conditions regard-
less of the shape of the functions for generating the simulation data. 

Application to real data (2-hour oral glucose tolerance test) 
A genome-wide dataset from the KARE project [21] was investi-
gated for the phenotype of 2-hour oral glucose tolerance test 
(OGTT-2h) results, as well as γ-GTP levels. The dataset comprised 
8,387 valid samples genotyped for 327,872 SNPs over 22 chromo-
somes. OGTT-2h is often used to diagnose diabetes, with two criti-
cal values (140 and 200 mg/dL) [28], as tabulated in Table 2. The 
OGTT-2h distribution was not too skewed to be regarded as the 
gamma distribution examined in this paper. Because of the three-
stage diagnosis due to the two critical values, a more elaborate cat-
egorization than high and low risk might be necessary. Therefore, 
the OGTT-2h distribution may be explained better with a more 
complex distribution than a simple normal distribution. Instead, 
the mixed form examined in Fig. 4C may be appropriate for 
OGTT-2h. Fig. 5 shows the scree plots for the association 
strengths estimated with Epanechnikov kernels for the main effect 
(A) and two-order interactions (B). The top SNPs were identified 
by rs numbers. The distinction can be observed very clearly, espe-
cially in Fig. 5C. In Table 2, the details of the identified SNPs are 

listed. Among them, rs30500 was found to have a major association 
with type 1 diabetes by a previous report [29], while rs3780603 
was also listed as having an association with type 2 diabetes in an-
other study [30]. It has been suggested that glucose levels can be a 
prognostic factor in ovarian carcinoma [31]. Interestingly, 
rs2227311 in Table 3 was also listed as being associated with the 
risk of ovarian cancer [32]. Diabetic ketoacidosis was recently re-
ported to have an effect on pulmonary disease [33], and 
rs41417552, found to be associated with the OGTT-2h phenotype, 
was also reported to be one of the seven associated SNPs associated 
with pulmonary edema [34]. The top two-order interaction effects 
on OGTT-2h are listed in Table 3. rs30500, which was selected by 
the main effect, was also found to participate in the interaction. Its 
interaction with rs1559347 distinguished itself quite prominently 
in the two-order association with OGTT-2h. 

Application to real data (γ-GTP) 
The γ-GTP distribution was found to be skewed enough to be re-
garded as the gamma distribution. Therefore, an analysis was per-
formed by KDE with the boundary effect considered. Fig. 5 shows 
the scree plots for the association strengths estimated with Epanech-
nikov kernels for the main effect (B) and two-order interactions (D). 

Table 1. Type I error estimation with a significance level (α) of 0.05

Type I error rate (%) Normal Gamma Mixed
MAF

0.4 5.0 5.3 4.9
0.2 4.7 5.7 5.0

Heritability
0.4 4.8 4.8 5.3
0.3 4.9 4.9 4.6
0.2 4.6 5.6 5.0
0.1 4.7 5.0 5.1
0.05 5.0 5.7 4.9
0.02 4.7 5.8 5.2
0.01 5.0 5.8 4.6

Overall 4.8 5.4 5.0

MAF, minor allele frequency.

Table 2. Main effect found by KDE for OGTT-2h with KARE samples

Rs ID Chromosome MI p-value Reference
rs1559347 16 0.0069 2 ×  10−5 -
rs2055918 4 0.0066 3 ×  10−5 -
rs30500 5 0.0064 4 ×  10−5 [29]
rs12983584 19 0.0062 4 ×  10−5 -
rs4338946 2 0.0061 4 ×  10−5 -
rs10968001 9 0.0059 4 ×  10−5 -
rs6919172 6 0.0058 4 ×  10−5 -
rs2227311 13 0.0057 4 ×  10−5 [32,33]
rs7468639 9 0.0057 4 ×  10−5 -
rs16898812 5 0.0057 4 ×  10−5 -
rs3780603 9 0.0055 4 ×  10−5 [30]
rs41417552 5 0.0055 4 ×  10−5 [34]

KDE, kernel density estimation; OGTT-2h, 2-hour oral glucose tolerance 
test; KARE, Korean Association Resource; MI, mutual information.

Table 3. Interactions found by KDE for OGTT-2h with KARE samples

Rs ID pair Chromosome MI p-value
(rs30500, rs1559347) (5,16) 0.0153 1 ×  10−5

(rs16898812, rs30500) (5,5) 0.0140 1 ×  10−5

(rs2055918, rs30500) (4,5) 0.0138 1 ×  10−5

KDE, kernel density estimation; OGTT-2h, 2-hour oral glucose tolerance 
test; KARE, Korean Association Resource; MI, mutual information.
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A clear distinction can be observed, especially in Fig. 5B. Table 4 
lists the details of the identified SNPs. The newly found rs6990123 
showed an outstanding association strength compared to others, 
and it participated in two-order interactions, as shown in Table 5, to 
make top associated pairs with SNPs absent from the list of the top 
main effects. rs2074356 was reported to have a strong association 

Table 5. Interactions found by KDE for γ-GTP with KARE samples

rs ID pair Chromosome MI p-value
(rs2211730, rs6990124) (8,8) 0.0392 1 ×  10−5

(rs314743, rs6990124) (5,8) 0.0389 1 ×  10−5

(rs6990124, rs11103291) (8,9) 0.0389 1 ×  10−5

KDE, kernel density estimation; γ-GTP, γ-glutamyl transpeptidase; KARE, 
Korean Association Resource; MI, mutual information.

Fig. 5. Scree plots of the associations. Top associated main effects of a single nucleotide polymorphism (SNP) (A, B) and 2-order interacting 
SNPs (C, D), for the phenotypes of 2-hour oral glucose tolerance test (OGTT-2h) and γ-glutamyl transpeptidase (γ-GTP), respectively. MI, 
mutual information.

Table 4. Main effect found by KDE for γ-GTP with KARE samples

Rs ID Chromosome MI p-value Reference
rs6990124 8 0.0309 1 ×  10−5 -
rs2074356 12 0.0120 3 ×  10−5 [35]
rs11066280 12 0.0117 4 ×  10−5 [36]
rs4604857 11 0.0105 1.1 ×  10−4 -
rs16872439 8 0.0097 2.3 ×  10−4 -
rs9522473 13 0.0096 2.4 ×  10−4 -
rs2227311 13 0.0091 3.7 ×  10−4 -
rs16875527 4 0.0083 7.8 ×  10−4 -
rs663661 10 0.0081 8.7 ×  10−4 -
rs398182 22 0.0080 9.5 ×  10−4 -
rs12229654 12 0.0075 1.42 ×  10−3 [37]

KDE, kernel density estimation; γ-GTP, γ-glutamyl transpeptidase; KARE, 
Korean Association Resource; MI, mutual information.
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with γ-GTP levels [35], and rs11066280 was reported to have a 
strong association with type 2 diabetes, which is closely related to 
γ-GTP [36]. rs12229654, which has been reported to be associated 
with both γ-GTP and high-density lipoprotein cholesterol [37], was 
also found. 

Discussion 

We investigated genomic associations with quantitative traits, in-
cluding genomic interactions. Entropy-based MI can measure the 
association strength if the entropy of the trait could be estimated 
both by itself and as conditioned on the genotypes. We estimated 
entropy through KDE. 

We explored and compared two types of kernel functions for 
KDE. The Epanechnikov kernel involves a far lower computation-
al burden than the Gaussian kernel, but it was found to be as pow-
erful as the Gaussian kernel for the genomic association task. 
There are several other kernels whose efficiencies lie between the 
Epanechnikov and Gaussian kernels, but under the non-negativity 
and symmetry constraint, their shapes are quite similar, especially 
in that their extents are limited by the indicator function, unlike 
the Gaussian kernel. Therefore, the two kernels investigated may 
lie at two extremes in terms of efficiency and how they are defined. 
Other kernels are expected to provide similar results. 

When the dataset is made from a skewed distribution with a 
crowded boundary, using a symmetric kernel inherently leads to 
an extended tail outside the supported range. A consequence is an 
incorrect estimation of the association. The real data for γ-GTP, 
which we reported in the present analysis, may not be correctly an-
alyzed with a usual symmetric kernel. We suggested defining a 
transformed argument in the kernel to confine the sum of the ker-
nel functions within the supported range. Through these tactics, 
the hit ratios were found to be stable and superior to those from 
other methods. 

The proposed method can be extended to multivariate pheno-
type traits, while m-spacing is intrinsically a univariate method. 
Multivariate traits should be the natural extension of this paper. 
When the real data are expected to be more complex, beyond a di-
chotomous classification, our method in this paper would there-
fore be a legitimate candidate. Phenotypes with more than one 
threshold can be found, one of which is the OGTT-2h phenotype 
analyzed here. 

Simultaneous associations of SNPs were found with the pheno-
types that have been suggested to have OGTT-2h-related traits as 
a prognostic factor. Therefore, these SNP findings may provide 
additional evidence for the reported pathways. This might be a 

benefit of analyzing quantitative traits in their original form. 
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