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Abstract
Kullback-Leibler (KL) information is a measure of discrepancy between two probability density functions.

However, several nonparametric density function estimators have been considered in estimating KL information
because KL information is not well-defined on the empirical distribution function. In this paper, we consider
the KL information of the equilibrium distribution function, which is well defined on the empirical distribution
function (EDF), and propose an EDF-based goodness of fit test statistic. We evaluate the performance of the
proposed test statistic for an exponential distribution with Monte Carlo simulation. We also extend the discussion
to the censored case.

Keywords: Cumulative residual KL information, exponential distribution, Fisher information, Good-
ness of fit test.

1. Introduction

Suppose that a random variable X has a distribution function, F(x) with a continuous density function
f (x). Shannon entropy is defined as

H( f ) = −
∫ ∞

−∞
f (x) log f (x)dx.

Shannon entropy is a measure of uncertainty and the distribution function maximizing the entropy
(under some constraints) is called maximum entropy distribution (Jayens, 1957). The entropy of
order statistics has been studied by Wong and Chen (1990), Park (1995), Abo-Eleneen (2011) and
Mosayeb and Borzadaran (2013).

The Kullback-Leibler (KL) information is defined for f (x) and g(x) being the reference distribu-
tion as

K(g : f ) =
∫ ∞

−∞
g(x) log

g(x)
f (x)

dx.

KL information is nonnegative and the equality to zero holds iff f (x) = g(x). The sample estimates
of H( f ) and K(g : f ) can be simply obtained as H( fn) and K(gn : fn), respectively, but are not
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attainable for fn = dFn where Fn is the empirical distribution function. Hence, several nonparametric
density function estimators (Theil, 1980; Dudewicz and van der Meulen, 1981; Bowman, 1992; Park
and Park, 2003) have been considered in estimating KL information, but we have to determine the
bandwidth or the gap of order statistics.

In this paper, we consider the equilibrium distribution (or integrated tail distribution) whose proba-
bility density function is defined to be f ∗(x) = F̄(x)/

∫ ∞
0 F̄(x)dx (Andrews and Andrews, 1962; Naka-

mura, 2009) and study its entropy and KL information where F̄(x) = 1−F(x). Since f ∗n (x) = Fn(x)/x̄,
H( f ∗) is well-defined on the empirical distribution function as

H( f ∗n ) = −1
x̄

n∑
i=0

n − i
n

log
n − i

n
(xi+1:n − xi:n) + log x̄,

where xi:n is ith ordered value from a sample of size n and x0:n = 0.
KL information of f ∗(x) and g∗(x) being the reference distribution can be written as

K(g∗ : f ∗) =
∫ ∞

0

Ḡ(x)∫ ∞
0 Ḡ(x)dx

log
Ḡ(x)
F̄(x)

dx + log

∫ ∞
0 F̄(x)dx∫ ∞
0 Ḡ(x)dx

and is also well-defined on the empirical distribution function. K(g∗ : f ∗) is nonnegative, and the
equality to zero holds iff F(x) = G(x) under the equal first moment condition. We consider this equal
moment condition in parameter estimation and can provide the estimate of K(g∗ : f ∗) as an EDF-based
goodness fit test statistic. Monte Carlo simulation study has been done to evaluate the performance
of the proposed test statistic. We also extend the result to the censored case by taking the equilibrium
distribution function of the censored variable.

2. KL Information of the Equilibrium Distribution Function

We consider only a nonnegative random variable so that E(X) can be expressed as
∫ ∞

0 F̄(x)dx. The
equilibrium density function is defined as f ∗(x) = F̄(x)/

∫ ∞
0 F̄(x)dx, and it can be easily shown that

the exponential density function is the only continuous density function iff f ∗(x) = f (x). Suppose
that the distribution functions of the random variables X,Y are F and G, respectively. Then the KL
information of the equilibrium density functions f ∗(x) = F̄(x)/E(X) and g∗(y) = Ḡ(y)/E(Y) can be
written as

K(g∗ : f ∗) =
∫ ∞

0

Ḡ(x)
E(Y)

log
Ḡ(x)
F̄(x)

dx + log E(X) − log E(Y).

K(g∗ : f ∗) is location and scale invariant, and is well defined on the empirical distribution func-
tion. K(g∗ : f ∗) is nonnegative, however, but the equality to zero means g∗(x) = f ∗(x), which is
F̄(x)/E(X) = Ḡ(x)/E(Y), not F(x) = G(x). Hence, if we like to preserve the characterization prop-
erty, the equal first moment condition should hold, which can be stated as follows.

Lemma 1. For two nonnegative random variables where their first moments are finite and equal,
K(g∗ : f ∗) is nonnegative and the equality to zero holds iff F(x) = G(x).

Remark 1. Rao et al. (2004) introduced a cumulative residual entropy (CRE) as

CRE(F) = −
∫ ∞

0
F̄(x) log F̄(x)dx
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and Baratpour and Rad (2012) further suggested the cumulative residual KL information (CRKL) as

CRKL(G : F) =
∫ ∞

0
Ḡ(x) log

Ḡ(x)
F̄(x)

dx + E(X) − E(Y),

which is well-defined on the empirical distribution function but is not scale invariant.
Because

K (g∗ : f ∗) − 1
E(Y)

CRKL(G : F) = E(X)
{

E(Y)
E(X)

− log
E(Y)
E(X)

− 1
}
,

we have

K(g∗ : f ∗) ≈ 1
E(Y)

CRKL(G : F)

if E(X)/E(Y) ≈ 1.

f ∗(x) is different from f (x) except for the exponential distribution. To measure the difference
between f ∗(x) and f (x), we can consider the approximation of KL information in terms of the Fisher
information in Kullback (1959) as

K ( f (x : θ); f (x; θ + ∆θ)) ≈ 1
2

(∆θ)2I f (θ),

where I f (θ) is the Fisher information about θ in X.
Then we have the approximation of K( f ∗(x; θ) : f ∗(x; θ + ∆θ)) as follow.

K( f ∗(x; θ) : f ∗(x; θ + ∆θ)) ≈ 1
2

(∆θ)2I f ∗(θ),

where

I f ∗(θ) = −
∫ ∞

0

F̄(x; θ)
E(X)

∂2

∂θ2 log F̄(x; θ)dx +
∂2

∂θ2 log E(X).

Hence, I f (θ) − I f ∗(θ) can be considered in studying the departure of f ∗(x) from f (x). It is evidently 0
for the exponential density function.

Example 1. If we consider the Weibull distribution, F(x; θ) = 1 − exp(−xθ), f ∗(x) becomes the
one-parameter generalized gamma (GGD) distribution, θ exp(−xθ)/Γ(1/θ). We note that the GGD in
Stacy (1962) is actually a three parameters distribution as

f (x; a, d, p) =
1

Γ
(

d
p

) p
ad xd−1 exp

(
−

( x
a

)p)
.

If p = 1, the GGD becomes the gamma distribution. For a = d = 1, we have one-parameter GGD,
p exp(−xp/Γ(1/p)).

If we let f0(x) be the standard exponential distribution, we have

K( f0(x) : f (x; θ)) − K ( f0(x) : f ∗(x; θ)) ≈ 1
2

(θ − 1)2
(
I f (θ) − I f ∗(θ)

)
.



128 Sangun Park, Dongseok Choi, Sangah Jung

The Fisher information about θ in f (x) and f ∗(x) can be obtained as

I f (θ) =
∫ ∞

0

(
1
θ
+ log x

)2

θxθ−1 exp
(
−xθ

)
dx

=
1
θ2

{
(γ − 1)2 +

π2

6

}
and

I f ∗(θ) =
1

Γ(1 + 1/θ)

∫ ∞

0
exp

(
−xθ

)
(log x)2xθdx +

2ψ(0)(1 + 1/θ)
θ3 +

ψ(1)(1 + 1/θ)
θ4 ,

where γ is the Euler’s constant, and ψ(i) is the polygamma function of order i.

3. Sample Estimate and Application to a Goodness of Fit Test

In this section, we consider the application of K(g∗ : f ∗) to the goodness of fit by letting F(x) = Fθ(x)
and G(x) = Fn(x) where θ is an unknown parameter and Fn is the empirical distribution function.
The equilibrium density function can be estimated with the empirical distribution function as f ∗n (x) =
F̄n(x)/x̄, and H( f ∗n ) can be written as

H
(
f ∗n

)
= −1

x̄

n∑
i=0

n − i
n

log
n − i

n
(xi+1:n − xi:n) + log x̄.

We also have

K
(
f ∗n : f ∗θ

)
=

∫ ∞

0

F̄n(x)
x̄

log
F̄n(x)
F̄θ(x)

dx +
(
log Eθ(X) − log x̄

)
.

To preserve the characterization, we need to estimate the unknown parameter in Fθ(x) by using the
moment condition, EFn (X) = Eθ(Y). For example, θ̂ = x̄ satisfies the moment condition for an expo-
nential distribution, f (x; θ) = exp(−x/θ)/θ. If we have other parameter η than θ, we can consider any
consistent estimator η. For example, we can consider the additional criterion of minimum discrimi-
nant information (MDI) loss (see Soofi, 2000), which choose the parameter value minimizing the KL
information, as

η̂ = arg min
η

K
(

f ∗n : f ∗
η,θ̂

)
.

Then K( f ∗n : f ∗
θ̂

) can be considered as a goodness of fit test statistic. Suppose that f ∗n is a consistent
estimator of the true density function f ∗, we have for a consistent estimator θ̂, by Slutsky’s theorem,

K
(

f ∗n : f ∗
θ̂

)
→ K

(
f ∗ : f ∗θ

)
as n→ ∞.

Under the null hypothesis f ∗ = f ∗θ , K( f ∗n : f ∗
θ̂

) is a consistent estimate of 0.
For the exponential distribution fθ(x) = exp(−x/θ)/θ, the resulting parameter estimator is x̄ so that

EFn (Y) = Eθ(X). Then K( f ∗n : f ∗
θ̂

) can be written as

K( f ∗n : f ∗
θ̂

) =
1
x̄

∫ ∞

0
F̄n(x) log F̄n(x)dx +

1
x̄

∫ ∞

0

xF̄n(x)
x̄

dx

=
1
x̄

n∑
i=0

n − i
n

log
n − i

n
(xi+1:n − xi:n) +

1
x̄2

n∑
i=0

n − i
n

∫ xi+1:n

xi:n

xdx.
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Figure 1: Sampling distributions of T1 and T2 for a sample of size 20

Table 1: The critical values of each statistic for α = 0.1, 0.05, 0.01 with sample size n = 20, 30, 40, and 50
α = 0.1 α = 0.05 α = 0.01

T1 T2 T1 T2 T1 T2
n = 20 0.1147 0.1329 0.1399 0.1607 0.2379 0.2237
n = 30 0.0877 0.0970 0.1080 0.1186 0.1859 0.1680
n = 40 0.0719 0.0780 0.0894 0.0958 0.1574 0.1390
n = 50 0.0610 0.0653 0.0764 0.0801 0.1361 0.1181

Then we have a test statistic, which can be simply written as

T1 =
1
x̄

n∑
i=0

n − i
n

log
n − i

n
(xi+1:n − xi:n) +

1
2nx̄2

n∑
i=1

x2
i .

Baratpour and Rad (2012) considered the scaled CRKL as a goodness of fit test statistic as

T2 =
1∑n

i=1 x2
i

2
∑n

i=1 xi

 ∑n
i=1 x2

i

2
∑n

i=1 xi
− CRE(Fn)

 . (3.1)

The critical values of T1 and T2 were obtained with Monte Carlo simulation where the simulation
size is 100000, and tabulated in Table 1. For a sample of size 20, the sampling distributions of T1 and
T2 are displayed in Figure 1. We can see from Table 1 and Figure 1 that T1 is closer to zero.

We obtain the powers for both T1 and T2 against gamma and Weibull alternatives with various
shape parameter values. The results are presented in Figure 2, and we see that T1 performs better than
T2 against alternatives with shape parameter value less than 1. Hence, it is recommended to use T1
against decreasing failure rate (DFR) alternatives and to use T2 against increasing failure rate (IFR)
alternatives.
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Figure 2: Powers of T1 and T2 against gamma and Weibull alternatives (n = 20, α = 0.05)

4. Extension to the Censored Data

In this section, we consider the Type I right censored variable, min(X,C), where C is the censoring
point assumed to be a constant. The density function of min(X,C) can be written as

fC(x) =


f (x), if x < C,
1 − F(C), if x = C,
0, elsewhere.

Then the KL information of fC(x) and gC(x) in terms of gC(x) can be obtained as

K(gC : fC) =
∫ C

0
g(x) log

g(x)
f (x)

dx + (1 −G(C)) log
1 −G(C)
1 − F(C)

,

but is also not well-defined on the empirical distribution function.
For this censored variable, we can consider the corresponding equilibrium density function to

fC(x), which can be obtained as

f ∗C(x) =


F̄(x)∫ C

0 F̄(x)dx
, if x < C,

0, elsewhere.

Then the KL information of the equilibrium density functions f ∗C(x) and g∗C(x) can be written as

K
(
g∗C : f ∗C

)
= KC(g∗C : f ∗C)

=

∫ ∞

0

Ḡ(x)∫ C
0 Ḡ(x)dx

log
Ḡ(x)
F̄(x)

dx + log
∫ C

0
F̄(x)dx − log

∫ C

0
Ḡ(x)dx.
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Table 2: Critical value estimates (α = 0.05) of T based on 200,000 simulations
Censoring point (r) n = 10 n = 20 n = 30 n = 40 n = 50

4 0.1307 0.0659 0.0441 0.0332 0.0265
5 0.1431 0.0722 0.0481 0.0363 0.0290
6 0.1538 0.0776 0.0519 0.0389 0.0312
7 0.1635 0.0827 0.0554 0.0414 0.0332
8 0.1721 0.0873 0.0583 0.0438 0.0351
9 0.1786 0.0915 0.0612 0.0459 0.0369
10 0.2094 0.0954 0.0639 0.0479 0.0385
15 0.1110 0.0753 0.0565 0.0454
20 0.1397 0.0837 0.0637 0.0511
25 0.0890 0.0694 0.0561
30 0.1078 0.0738 0.0599
35 0.0753 0.0630
40 0.0893 0.0655
45 0.0653
50 0.0765

K(g∗C : f ∗C) is location and scale invariant, and is well-defined on the empirical distribution function.
K(g∗C : f ∗C) is nonnegative, and the equality to zero means F(x) = G(x) under the condition that∫ C

0 F̄(x)dx =
∫ C

0 Ḡ(x)dx.

If we let f ∗C,n(x) and f ∗C,θ(x) be F̄n(x)/
∫ C

0 F̄n(x)dx and F̄θ(x)/
∫ C

0 F̄θ(x)dx, respectively, we can
establish a goodness of fit test statistic. For an exponential distribution, fθ(x) = exp(−x/θ)/θ, K( f ∗C,n :
f ∗
C,θ̂

) can be obtained as

K
(

f ∗C,n : f ∗
C,θ̂

)
=

1∫ C
0 F̄n(x)dx

∫ C

0
F̄n(x) log F̄n(x)dx +

1

θ̂
∫ C

0 F̄n(x)dx

∫ C

0
xF̄n(x)dx,

where θ̂ is chosen so that
∫ C

0 F̄θ̂(x)dx =
∫ C

0 F̄n(x)dx.
Suppose that we have r− 1 observations less than or equal to C so that xr−1:n ≤ C < xr:n where xi:n

is the ith smallest value. Then K( f ∗C,n : f ∗
C,θ̂

) can be written as

K
(

f ∗C,n : f ∗
C,θ̂

)
=

1
r−1∑
i=0

n − i
n

(xi+1:n − xi:n)

r−1∑
i=0

n − i
n

log
n − i

n
(xi+1:n − xi:n)

+
1

θ̂
r−1∑
i=0

n − i
n

(xi+1:n − xi:n)

r−1∑
i=0

n − i
2n

(
x2

i+1:n − x2
i:n

)
,

where xr:n = C.
Because the censoring time depends on the unknown scale parameter, the critical value of K( f ∗C,n :

f ∗
C,θ̂

) under the exponential distribution is not free of θ for a given censoring time. Hence, we consider
here the Type II censored case where C is taken to be xr:n.

We made 200,000 Monte Carlo simulations to determine the 5% critical value under the expo-
nential null distribution for n = 10(10)50, and the results are tabulated in Table 2. We compare the
performance of the proposed test statistic K as a goodness of fit test statistic with two competing test
statistics as follow.
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Table 3: Power estimate (%) of .05 tests for Type-II Censoring against eleven alternatives of the exponential
distributions based on 100,000 simulations; n = 20

Censoring points r = 5 r = 10 r = 15
Alternatives K Tp W T Tp W T Tp W

Exp(1) 5.12 5.07 5.14 5.08 5.14 5.06 4.95 4.89 5.03
Gamma(0.5) 5.96 1.48 18.22 25.30 4.95 24.38 42.78 13.92 29.19
Gamma(1.5) 11.22 11.66 7.07 12.27 17.08 10.88 7.85 19.14 13.97
Gamma(2) 18.88 19.50 12.16 25.05 34.25 23.45 19.02 41.38 32.36

Log normal(0.5) 69.79 71.45 56.83 89.31 97.16 85.50 86.95 99.19 91.20
Log normal(1) 18.59 20.28 11.99 14.31 26.59 13.76 6.35 22.31 10.39

Log normal(1.5) 6.20 6.98 4.78 5.22 5.32 6.98 22.85 7.60 19.96
Weibull(0.5) 7.38 1.52 21.37 38.28 10.07 36.20 69.41 34.90 54.16
Weibull(1.5) 14.03 14.49 8.90 19.69 25.12 17.85 17.05 33.67 28.71
Weibull(2) 27.13 27.21 18.13 47.65 55.95 45.95 53.36 74.55 71.64
Uniform 6.49 6.46 5.33 10.50 10.80 8.51 16.49 23.90 24.29

1. We consider a censored version of a Shapiro-Wilk test (Samanta and Schwarz, 1988), which is
known to be one of competing test statistics, as

W =
(
∑r

i=1 yi)2

r
∑r+1

i=2
∑r+1

j=2((min(i, j) − 1)/(r −min(i, j) + 2))yi−1y j−1
,

where yi = (n − i + 1)(x(i) − x(i−1)).

2. Some goodness of fit test statistics based on the Kullback-Leibler information or entropy differ-
ence have been proposed (Ebrahimi et al., 1992). The censored version of Ebrahimi et al. (1992)
has been proposed (Park, 2005) as

Tp =
r
n

(
log θ̂mle + 1

)
− 1

n

r∑
i=1

log
{ n

2m
(xi+m:n − xi−m:n)

}
+

(
1 − r

n

)
log

(
1 − r

n

)
.

To compare the powers of the test statistics, we consider gamma (shape = 0.5, 1, 2), lognormal
(scale = 0.5, 1, 1.5), Weibull (shape = 0.5, 1, 2) and uniform distributions as alternatives. We
note that gamma(shape = 0.5) and Weibull(shape = 0.5) distributions are the DFR alternatives, while
gamma(shape = 1.5, 2), Weibull(shape = 1.5, 2) and uniform distributions are the IFR alternatives.
The power estimates are obtained with 100,000 Monte Carlo simulations, and are tabulated in Tables
3 and 4 for n = 20, 40. Tp shows best performances at increasing hazard alternatives, but we can
notice from Table 3 that Tp is not an unbiased test. However K has comparable power to Tp in the
case of light censoring. In general, K shows better powers than W (r/n = 0.25, 0.5) against increasing
hazard alternatives in the case of heavy censoring and against decreasing hazard alternatives in the
case of light censoring (r/n = 0.75).

5. Illustrated Example

In this section, we consider one real-life data analysis from Lawless (1982) illustrate the use of the
proposed test statistic in a goodness of fit test for exponentiality. The data are given below, which
consist of failure times for 36 appliances subjected to an automatic life test:

Data : 11, 35, 49, 170, 329, 381, 708, 958, 1062, 1167, 1594, 1925, 1990, 2223, 2327, 2400, 2451,
2471, 2551, 2565, 2568, 2694, 2702, 2761, 2831, 3034, 3059, 3112, 3214, 3478, 3504, 4329, 6367,
6976, 7846, 13403
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Table 4: Power estimate (%) of .05 tests for Type-II Censoring against eleven alternatives of the exponential
distributions based on 100,000 simulations; n = 40

Censoring points r = 10 r = 20 r = 30
Alternatives K Tp W T Tp W T Tp W

Exp(1) 5.09 4.97 5.00 5.14 4.93 5.10 4.94 5.06 4.99
Gamma(0.5) 21.95 6.77 26.86 49.71 25.03 38.26 67.21 44.93 47.44
Gamma(1.5) 16.56 18.25 11.96 19.66 26.17 18.54 15.68 30.09 23.94
Gamma(2) 33.95 36.97 26.42 46.71 57.67 44.25 46.02 68.75 57.64

Log normal(0.5) 98.00 99.17 93.39 99.90 100.00 98.67 99.93 100.00 99.33
Log normal(1) 33.72 42.85 26.10 24.85 49.83 22.51 10.40 42.81 12.90

Log normal(1.5) 6.91 10.28 6.00 6.91 8.77 8.69 36.19 19.43 30.36
Weibull(0.5) 28.15 9.49 33.17 70.14 44.44 57.82 92.29 80.17 80.61
Weibull(1.5) 22.60 23.49 16.64 35.06 40.55 33.55 40.05 54.98 53.48
Weibull(2) 51.09 51.84 42.13 80.78 84.06 78.31 91.53 96.40 95.68
Uniform 7.52 7.00 5.85 14.74 13.25 13.05 35.96 38.50 48.58

Then we can calculate K to be 0.045719 whose corresponding p-value can be estimated from
Monte Carlo simulations as 0.3940; therefore, the null hypothesis is not rejected. We note that Tp and
W can be calculated to be 0.199325 and 0.031024, and the corresponding p-values can be estimated
from Monte Carlo simulations as 0.1802 and 0.4092.

Now suppose that we have only first 18 failure times, which results in the Type II censored sample
of r = 18. Then we can calculate K to be 0.029548 and estimate its p-value to be 0.3322. Hence,
we cannot reject the null hypothesis. We note that Tp and W can be calculated to be 0.103372 and
0.069876, and the corresponding p-values can be estimated from Monte Carlo simulations as 0.5243
and 0.3390.

6. Conclusion

We suggest the KL information of the equilibrium density function to overcome the limitation of
KL information that it is not well-defined on the empirical distribution. The KL information of the
equilibrium density function has the nonnegativity property and characterization property under the
equal first moment condition. Hence, we established an EDF-based goodness of fit test statistic,
and studied its performance for an exponential distribution. We further extended the discussion to
the censored case by considering the equilibrium density function of the censored variable. This
EDF-based test is an omnibus test which is applicable to other distribution cases, but its sampling
distribution is not tractable and the equal first moment condition should be considered in parameter
estimation.
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