• 제목/요약/키워드: dendrimer nanoparticles

검색결과 12건 처리시간 0.024초

Spectrophotometric Determination of Maximum Loading Capacity of a Dendrimer

  • Youngjin Jeon
    • 대한화학회지
    • /
    • 제67권4호
    • /
    • pp.217-221
    • /
    • 2023
  • A series of hydrophobic dodecyl-terminated 6th-generation poly(amidoamine) dendrimer (H)-encapsulated cadmium sulfide ((CdS)n@H) nanoparticles in a co-solvent (toluene: methanol = 6.8: 3.2 v/v) are synthesized. The diameters of CdS nanoparticles within the dendrimer were estimated by analyzing the positions of the first excitonic absorption peaks of CdS in UV-vis spectra. The size of the CdS nanoparticle within the dendrimer shows a saturation value as the CdS/H ratio (n) increases, which is believed to be due to the limited physical size of the void cavity within the dendrimer. This simple and convenient method of estimating the saturation of the size of CdS in dendrimers may be useful in determining the maximum void space within other dendrimers under various solvent conditions.

Characterization of Linear Polymer-Dendrimer Block Copolymer/Plasmid DNA Complexes: Formation of Core-shell Type Nanoparticles with DNA and Application to Gene Delivery in Vitro

  • Choi, Joon-Sig;Choi, Young-Hun;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권7호
    • /
    • pp.1025-1030
    • /
    • 2004
  • A hybrid linear polymer-dendrimer block copolymer, poly(ethylene glycol)-block-poly(L-lysine) dendrimer, was synthesized and introduced to form polyionic complexes with DNA. The copolymer formed core-shell type nanoparticles with plasmid DNA. From dynamic light scattering experiments, the mean diameter of the polyplexes was observed to be 154.4 nm. The complex showed much increased water solubility compared to poly(L-lysine). The plasmid DNA in polyplexes was efficiently protected from the enzymatic digestion of DNase I. The cytotoxicity and transfection efficiency for 293 cells was measured in comparison with poly(Llysine).

Cellular-uptake Behavior of Polymer Nanoparticles into Consideration of Biosafety

  • Do, Jeong-Hoe;An, Jeong-Ho;Joun, Yong-Seung;Chung, Dong-June;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • 제16권8호
    • /
    • pp.695-703
    • /
    • 2008
  • Nanoparticles have tremendous potential in cancer prevention, detection and augmenting existing treatments. They can target tumors, carry imaging capability to document the presence of tumors, sense pathophysiological defects in tumor cells, deliver therapeutic genes or drugs based on the tumor characteristics, respond to external triggers to release an appropriate agent, document the tumor response, and identify the residual tumor cells. Nanoparticles < 30 nanometers in diameter show unexpected and unique properties. Furthermore, particles < 5 nanometers in size can easily penetrate cells as well as living tissues and organs. This study evaluated the safety of nano materials in a living body and the relationship between the living tissue and synthetic nano materials by examining the in-vitro cytotoxicity of poly(lactic-co-glycolic) acid (PLGA) nano-spheres and fluorescein isothiocynate(FITC)-labeled dendrimers as polymer nanoparticles. PLGA was chosen because it has been used extensively for biodegradable nanoparticles on account of its outstanding bio-compatibility and its acceptance as an FDA approved material. The dendrimer was chosen because it can carry a molecule that recognizes cancer cells, a therapeutic agent that can kill those cells, and a molecule that recognizes the signals of cell death. Cytotoxicity in L929 mouse fibroblasts was monitored using MTT assay. Microscopic observations were also carried out to observe cell growth. All assays yielded meaningful results and the PLGA nanoparticles showed less cytotoxicity than the dendrimer. These nano-particles ranged in size from 10 to 100 nm according to microscopy and spectroscopic methods.

PTMSP/PMMH Dendrimer 복합막의 기체투과특성 (Gas Permeation Characteristics of PTMSP/PMMH Dendrimer Composite Membranes)

  • 이현경;정원숙
    • 멤브레인
    • /
    • 제18권3호
    • /
    • pp.226-233
    • /
    • 2008
  • PTMSP에 $0{\sim}20$ wt% PMMH dendrimer 나노입자를 가하여 PTMSP/PMMH dendrimer 복합막을 제조하였다. 복합막의 기체 투과특성에 미치는 PMMH denimer의 영향을 조사하였다. $H_2,\;N_2,\;CO_2,\;CH_4$의 투과도는 PTMSP 내 PMMH endrimer의 함량이 증가하면서 감소하였다. PTMSP/PMMH dendrimer 복합막에서 수소를 제외한 다른 기체들의 투과도 순서는 $N_2\;<\;CH_4\;<\;CO_2$이며, 이것은 기체의 임계온도의 순서 $N_2\;<\;CH_4 <\;CO_2$와 일치하고 있다. $N_2$에 대한 기체의 선택도는 PTMSP 내의 PMMH denimer의 함량이 증가하면서 증가하였다. $CO_2/N_2$ 선택도는 5.6에서 16.9로 증가하였다.

Gadobutrol-dendrimer effects on metastatic and apoptotic gene expression

  • Kebriaezadeh, Abbas;Ashrafi, Sepehr;Rasouli, Rahimeh;Ebrahimi, Seyed Esmaeil Sadat;Hamedani, Morteza Pirali;Assadi, Artin;Saffari, Mostafa;Ardestani, Mehdi Shafiee
    • Advances in nano research
    • /
    • 제4권2호
    • /
    • pp.145-156
    • /
    • 2016
  • Dendrimers are one of the most appropriate nanocaries for imaging moieties in imaging applications.The purpose of this study was the evalution of cytotoxicity and inducing apoptosis of dendrimers. This study was conducted in order to investigate the metastasis suppression effect of dendrimer in human breast MCF-7 cell line and finding the nanoparticle protein corona in biological enviromental. Dendrimer cytotoxicity effect was assessed by MTT assay. The mRNA experession level of KAI1 as a metastasis suppressor gene, Bax as Pro- apoptotic gene, Bcl-2 as an anti-apoptotic gene and GAPDH as a housekepping gene were determined by real-time PCR assays.concentration-dependent nanoparticle cytotoxicity effect was proofed at range of 1-2 mg/mL in 24 hours, significant upregulation of mRNA expression of Bax, was observed whereas expression of anti-apoptotic Bcl-2 was down-regulated, also expression of metastasis suppressor gene KAI1 was up-regulated. So far a few studies confirmed apoptosis enhancement effect of dendrimers in MCF-7 cell line via bax/bcl-2 pathways. dendrimer nanoparticles was able to act as metastase inhibitor via upregulation of KAI1 gene.

덴드리머와 팔라듐 나노입자를 이용한 단일벽 탄소나노튜브 고성능수소센서 (Effects of Pd Nanoparticles on Single-Walled Carbon Nanotubes as High-Sensitivity Hydrogen Gas Sensors)

  • 이준민;주성화;조진현;김성진;이우영
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.342-346
    • /
    • 2010
  • Pd nanoparticles (NPs) were successfully functionalizedon the surfaces of single-walled carbon nanotubes (SWNTs) by dendrimer-mediated synthesis. The hydrogen sensing properties of the Pd NPs functionalized SWNTs were investigated. Pd NPs-dendrimer-SWNTs sensors show much better speedsand superior recovery rates but lower sensitivity compared to Pd NPs-functionalized SWNTs directly fabricated due to the existence of dendrimers. Pyrolysis of the dendrimers by heat treatment resulted in a fast response time and high sensitivity owing to the reduced length of the dendrimers. These results demonstrate that the heat treatment of dendrimers in Pd NPs-dendrimer-SWNTs sensors can enable significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of hydrogen gas ($H_2$) in air.

Electrochemistry on Alternate Structures of Gold Nanoparticles and Ferrocene-Tethered Polyamidoamine Dendrimers

  • Suk, Jung-Don;Lee, Joo-Han;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권11호
    • /
    • pp.1681-1686
    • /
    • 2004
  • Self-assembled systems with polyamidoamine (PAMAM) dendrimers combined with gold nanoparticles have been widely studied because of their potential applications in molecular electronics, catalyst carriers, chemical sensors, and biomedical devices. In our work, gold nanoparticle monolayers and multilayers with pure and ferrocene-tethered PAMAM dendrimers as cross-linking molecules were deposited on a mixed self-assembled monolayer of gold substrates. The various generations of PAMAM dendrimers can be covalently attached to mercaptoundecanoic acid mixed with a mercaptoundecanol self-assembled monolayer. Cyclic voltammograms show that redox peak currents on the alternate multilayers of gold nanoparticles and ferrocene-tethered PAMAM dendrimers increase as the number of layers increases. Fourier transform IR external reflection spectroscopy and scanning electron microscopy support the results from electrochemical measurements.

Pd nanoparticles on poly(amidoamine) dendrimers modified single-walled carbon nanotubes as highly sensitive hydrogen gas sensors

  • Lee, Jun-Min;Lee, Eun-Song-Yi;Jeon, Kye-Jin;Ju, Seong-Hwa;Jung, Yeong-Ri;Kim, Sung-Jin;Lee, Woo-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.93-93
    • /
    • 2009
  • In order to overcome the lack of reactivity with hydrogen gas ($H_2$) and utilize unique properties of Carbon Nano Tubes (CNTs) for the application to hydrogen sensors, there have been intensive works on the surface functionalization of CNTs with various types of nanoparticles including Pd. In the present work, we have investigated the effect of dendrimers and Pd nanoparticles to the hydrogen sensing properties of CNTs by comparing three types of samples: Pd/SWNTs (Sample I), Pd/dendrimer/SWNTs (Sample II) and heat-treated Pd/dendrimers/SWNTs (Sample III). As a result of IV measurement under the $H_2$ and air, sample I was found to have a high sensitivity (25%) to $H_2$, but to have a very slow response time (324 s) and recovery rate. On the other hand, Sample II was found to show much faster response time (3 s) and good recovery rate but lower sensitivity (8.6%) than Sample I which is due to induced dipole moments in the dendrimers. Interestingly, Sample III showed both fast response time (7 s) and high sensitivity (25%), indicating that the pyrolysis of the dendrimers during heat treatment which reduce the distance between the surface of the SWNTs and the functionalized Pd nanoparticles plays a key role in improving the sensitivity. The pyrolysis of the dendrimers in Pd nanoparticle-dendrimer-SWNTs was found to enable a significant electrical conductance modulation upon exposure to extremely low concentrations (10 ppm) of $H_2$ in air. Our results demonstrate that the Pd Nanoparticle-Grafted Single-Walled Carbon Nanotubes(SWNTs) with Dendrimers can be used to detect hydrogen, makingoutstanding properties such as fast response, and recovery time, high sensitivity, low detection limit at room temperature compared with other types of hydrogen sensors.

  • PDF