Gas Permeation Characteristics of PTMSP/PMMH Dendrimer Composite Membranes

PTMSP/PMMH Dendrimer 복합막의 기체투과특성

  • Published : 2008.09.30

Abstract

PTMSP/PMMH dendrimer composite membranes were made by dispersing $0{\sim}20$ wt% (based on polymer content) PMMH dendrimer nanoparticles in the PTMSP casting solution. The effect of PMMH dendrimer on gas permeability characteristics of the composite membranes was investigated. The permeabilities of $H_2,\;N_2,\;CO_2$, and $CH_4$ decreased as the PMMH dendrimer content within PTMSP increased. The permeabilities of different gases except hydrogen in PTMSP/PMMH dendrimer membranes follow the order: $N_2\;<\;CH_4\;<\;CO_2$ which are consistent with the order of critical temperature ($N_2\;<\;CH_4\;<\;CO_2$). The selectivities of gases for $N_2$ increased as the PMMH dendrimer content within PTMSP increased. The $CO_2/N_2$ selectivity increased from 5.6 up to 16.9.

PTMSP에 $0{\sim}20$ wt% PMMH dendrimer 나노입자를 가하여 PTMSP/PMMH dendrimer 복합막을 제조하였다. 복합막의 기체 투과특성에 미치는 PMMH denimer의 영향을 조사하였다. $H_2,\;N_2,\;CO_2,\;CH_4$의 투과도는 PTMSP 내 PMMH endrimer의 함량이 증가하면서 감소하였다. PTMSP/PMMH dendrimer 복합막에서 수소를 제외한 다른 기체들의 투과도 순서는 $N_2\;<\;CH_4\;<\;CO_2$이며, 이것은 기체의 임계온도의 순서 $N_2\;<\;CH_4 <\;CO_2$와 일치하고 있다. $N_2$에 대한 기체의 선택도는 PTMSP 내의 PMMH denimer의 함량이 증가하면서 증가하였다. $CO_2/N_2$ 선택도는 5.6에서 16.9로 증가하였다.

Keywords

References

  1. B. K. Park, S. H. Kong, S. Y. Lee, Y. J. Kim, and S. Y. Nam, 'Organic/inorganic hybrid electrolytes for the application of direct methanol fuel cell (DMFC) preparation and properties of sulfonated SEBS (SSEBS)-clay hydrid membranes', Membrane Journal, 15, 165 (2005)
  2. H. I. Cho, M. Y. Seo, D. H. Kim, I. C. Park, S. Y. Nam, and J. W. Rhim 'Pervaporation separation of water/ethanol mixture using PVA/PSSA-MA ion exchange membranes', Membrane Journal, 16, 235 (2006)
  3. J. W. Park, D. H. Shin, and Y. T. Lee, 'The concentration of magnolia aroma model solution using pervaporation and preparation of PVDF/PDMS composite membranes', Membrane Journal, 17, 14 (2007)
  4. T. Masuda, E. Isobe, T. Higashimura, and K. Takada, 'Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability', J. Am. Chem. Soc., 105, 7473 (1983) https://doi.org/10.1021/ja00363a061
  5. K. Nagai, T. Masuda, T. Nakagawa, B. D. Freeman, and I. Pinnau, 'Poly[1-(trimethylsilyl)- 1-propyne] and related polymers: synthesis, properties and functions', Prog. Polym., Sci., 26, 721 (2001) https://doi.org/10.1016/S0079-6700(01)00008-9
  6. I. Pinnau and L. G. Toy, 'Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)', J. Membr. Sci., 116, 199 (1996) https://doi.org/10.1016/0376-7388(96)00041-5
  7. M. Langsam and L. M. Robeson, 'Substituted propyne polymers-Part II. Effects of aging on the gas permeability properties of poly[1-(trimethylsilyl) propyne] for gas separation membranes', Polymer Eng. Sci., 29(1), 44 (1989) https://doi.org/10.1002/pen.760290109
  8. M. Yoshikawa, M. Kishida, M. Tanigaki, and W. Eguchi, 'Novel liquid membrane transport system for tryptophan', J. Membr. Sci., 47, 53 (1989) https://doi.org/10.1016/S0376-7388(00)80859-5
  9. K. Nagai, A. Higuchi, and T. Nakagawa, 'Bromination and Gas Permeability of Poly(1-trimethylsilyl- 1-propyne) Membrane', J. Appl. Polym. Sci., 54, 1207 (1994) https://doi.org/10.1002/app.1994.070540903
  10. L. Starannikova, V. Khodzhaeva, and Y. Yampolskii, 'Mechanism of aging of poly[1-(trimethylsilyl)-1- propyne] and its effect on gas permeability', J. Membr. Sci., 244, 183 (2004) https://doi.org/10.1016/j.memsci.2004.06.051
  11. K. Nagai and T. Nakagawa, 'Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl- 1-propyne) membranes synthesized with various catalysts', J. Membr. Sci., 105, 261 (1995) https://doi.org/10.1016/0376-7388(95)00065-K
  12. Y. Nagase, T. Ueda, K. Matsui, and M. Uchikura, 'Chemical Modification of Poly(substituted-acetylene). I. Synthesis and Gas Permeability of Poly (1-trimethylsilyl-1-propyne)/Poly(dimethylsiloxane) Graft Copolymer', J. Polymer Sci.: Part B: Polymer Physics, 29, 171 (1991) https://doi.org/10.1002/polb.1991.090290204
  13. D. Gomes, S. P. Nunes, and K. V. Peinemann, 'Membranes for gas separation based on poly[1- (trimethylsilyl)-1-propyne]-silica nanocomposites', J. Membr. Sci., 246, 13 (2005) https://doi.org/10.1016/j.memsci.2004.05.015
  14. T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, 'Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl- 1-propyne)', Macromolecules, 36, 6844 (2003) https://doi.org/10.1021/ma0341566
  15. K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, 'Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics', J. Membr. Sci., 278, 83 (2006) https://doi.org/10.1016/j.memsci.2005.10.046
  16. A. Higuchi, T. Yomoya, T. Imizu, K.Mizoguchi, Z.He, I. Pinnau, K. Nagai, and D. Freeman, 'Gas Permeation of fullerene-dispersed poly(1-trimethylsilyl- 1-propyne) membranes', J. Polymer Sci.: Part B: Polymer Physics, 38, 1749 (2000) https://doi.org/10.1002/1099-0488(20000701)38:13<1749::AID-POLB80>3.0.CO;2-I
  17. J. Qui, J. M. Zheng, and K. V. Peinemann, 'Gas transport properties in a novel poly(trimethylsilylpropyne) composite membrane with nanosized organic filler trimethylsilylglucose', Macromolecules, 39, 4093 (2006) https://doi.org/10.1021/ma0603635
  18. A. M. Caminade, R. Laurent, and J. P. Majoral, 'Characterization of dendrimers', Adv. Drug delivery Reviews, 57, 2130 (2005) https://doi.org/10.1016/j.addr.2005.09.011
  19. A. S. Kovvali and K. K. Sirkar, 'Carbon dioxide separation with novel solvents as liquid membranes', Ind. Eng. Chem. Res., 41, 2287 (2002) https://doi.org/10.1021/ie010757e
  20. L. Shao, T. S. Chung, S. H. Goh, and K. P. Pramoda, 'Transport properties of cross-linked polyimide membranes induced y different generations of diaminobutane (DAB) dendrimers', J. Membr. Sci., 238, 153 (2004) https://doi.org/10.1016/j.memsci.2004.03.034
  21. Y. Xiao, T. S. Chung, and M. L. Chng, 'Surface characterization, modification chemistry, and separation performance of polyimide and polyamidoamine dendrimer composite films', Langmuir, 20, 8230 (2004) https://doi.org/10.1021/la049060z
  22. Z. Wang, M. Li, Y. Cai, J. Wang, and S. Wang, 'Novel $CO_2$ selectively permeating membranes containing PETEDA dendrimer' J. Membr. Sci., 290, 250 (2007) https://doi.org/10.1016/j.memsci.2006.12.041
  23. N. launay, A. M. Caminade, R. Lahana, and J. P. Majoral, 'A general synthetic strategy for neutral phosphorus-containing dendrimers' Angew. Chem. Int. Ed. Engl., 33, 1589 (1994) https://doi.org/10.1002/anie.199415891
  24. M. Slany, M. Bardaji, M. J. Casanove, A. M. caminade, J. P. Majoral, and B. chaudret, 'Dendrimer surface chemistry. Facile route to polyphosphines and their gold complexes' J. Am. Chem. Soc., 117, 9764 (1995) https://doi.org/10.1021/ja00143a023
  25. A. V. Volkov, D. F. Stamatials, V. S. Khotimsky, V. V. Volkov, M. Wessling, and N. A. Plate, 'Poly(1-trimethylsily-1-propyne) as a solvent resistance nanofiltration membrane material', J. Membr. Sci., 281, 351 (2006) https://doi.org/10.1016/j.memsci.2006.04.004
  26. L. M. Robeson, 'Correlation of separation factor versus permeability for polymer membranes', J. Membr. Sci., 62, 165 (1991) https://doi.org/10.1016/0376-7388(91)80060-J