Browse > Article

Cellular-uptake Behavior of Polymer Nanoparticles into Consideration of Biosafety  

Do, Jeong-Hoe (Department of Polymer Science and Engineering, Sungkyunkwan University)
An, Jeong-Ho (Department of Polymer Science and Engineering, Sungkyunkwan University)
Joun, Yong-Seung (Department of Polymer Science and Engineering, Sungkyunkwan University, Research Center, Cosmax Co. Ltd.)
Chung, Dong-June (Department of Polymer Science and Engineering, Sungkyunkwan University, Intellectual Biointerface Engineering Center, Seoul National University)
Kim, Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University)
Publication Information
Macromolecular Research / v.16, no.8, 2008 , pp. 695-703 More about this Journal
Abstract
Nanoparticles have tremendous potential in cancer prevention, detection and augmenting existing treatments. They can target tumors, carry imaging capability to document the presence of tumors, sense pathophysiological defects in tumor cells, deliver therapeutic genes or drugs based on the tumor characteristics, respond to external triggers to release an appropriate agent, document the tumor response, and identify the residual tumor cells. Nanoparticles < 30 nanometers in diameter show unexpected and unique properties. Furthermore, particles < 5 nanometers in size can easily penetrate cells as well as living tissues and organs. This study evaluated the safety of nano materials in a living body and the relationship between the living tissue and synthetic nano materials by examining the in-vitro cytotoxicity of poly(lactic-co-glycolic) acid (PLGA) nano-spheres and fluorescein isothiocynate(FITC)-labeled dendrimers as polymer nanoparticles. PLGA was chosen because it has been used extensively for biodegradable nanoparticles on account of its outstanding bio-compatibility and its acceptance as an FDA approved material. The dendrimer was chosen because it can carry a molecule that recognizes cancer cells, a therapeutic agent that can kill those cells, and a molecule that recognizes the signals of cell death. Cytotoxicity in L929 mouse fibroblasts was monitored using MTT assay. Microscopic observations were also carried out to observe cell growth. All assays yielded meaningful results and the PLGA nanoparticles showed less cytotoxicity than the dendrimer. These nano-particles ranged in size from 10 to 100 nm according to microscopy and spectroscopic methods.
Keywords
PLGA; dendrimer; cytotoxicity; nano particle safety;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 R. S. Gesco, F. B. Prinz, and R. L. Smith, Nanoscale technology in biological system, CRC PRESS, Florida, 2005
2 R. Weissleder, H. C. Cheng, and A. Bogdanov, J. Magn. Reson. Imaging., 7, 258 (1997)   DOI   ScienceOn
3 B. K. Kang, S. K. Chon, S. H. Kim, S. Y. Jeong, M. S. Kim, S. H. Cho, H. B. Lee, and G. S. Khang, Int. J. Pharm., 286, 147 (2004)   DOI
4 R. M. Mainardes and R. C. Evangelista, Int. J. Pharm., 290, 137 (2005)   DOI
5 R. Duncan and L. Izzo, Adv. Drug Deliv. Rev., 57, 2215 (2005)   DOI   ScienceOn
6 H. Kobayashi and M. W. Brechbiel, Adv. Drug Deliv. Rev., 57, 2271 (2005)   DOI   ScienceOn
7 D. A. Tomalia, A. M. Naylor, and W. A. Goddard III, Angew. Chem. Int. Edn., 29, 138 (1990)   DOI
8 E. Sanders and C. T. Ashworth, Exp. Cell Res., 22, 137 (1961)   DOI   ScienceOn
9 K. Y. Win and Si-S. Feng, Biomaterials, 26, 2713 (2005)   DOI   ScienceOn
10 A. Moore, J. P. Basilion, E. A. Chiocca, and R. Weissleder, Biochim. Biophys. Acta, 1402, 239 (1998)   DOI   ScienceOn
11 A. T. Florence, A. M. Hillery, N. Hussain, and P. U. Jani, J. Control. Rel., 36, 39 (1995)   DOI   ScienceOn
12 U. Schoepf, E. Marecos, R. Melder, R. Jain, and R. Weissleder, Biotechniques, 24, 642 (1998)
13 M. N. V. Ravi Kumar, Bakowsky, and C. M. Lehr, Biomaterials, 25, 1771 (2004)   DOI   ScienceOn
14 V. L. Colvin, Nature Biotech., 21, 1166 (2003)   DOI   ScienceOn
15 T. J. Mosmann, Immunol. Methods, 65, 55 (1983)   DOI
16 D. A. Tomalia and J. M. Frechet, Prog. Polym. Sci., 30, 217 (2005)   DOI   ScienceOn
17 G. V. Calster, Regulating nanotechnology in the European Union, Nanotechnology law and business, p. 359 (2006)
18 L. Mu and S. S. Feng, J. Control. Rel., 86, 33 (2003)   DOI
19 K. C. Song, H. S. Lee, I. Y. Choung, K. I. Cho, Y. K. Ahn, and E. J. Choi, Colloid Surface A, 276, 162 (2006)   DOI
20 R. Jevprasephant, Pharm. Rev., 20, 1543 (2003)
21 M. E. Lefevre, J. W. Vanderhoff, J. A. Laussue, and D. D. Joel, Experimentia, 34, 120 (1978)   DOI   ScienceOn
22 T. C. Yeh, W. Zhang, S. T. Ildstad, and C. Ho, Magn. Reson. Med., 30, 617 (1993)   DOI   ScienceOn
23 N. Launay, A. M. Caminade, and J. P. Majoral, J. Organomet. Chem., 529, 51 (1997)   DOI
24 G. V. Calster, Regulating nanotechnology in the European Union, Nanotechnology law and business, p. 359 (2006)
25 M. J. Cloniger, Current Opinion in Chem. Biol., 6, 742 (2002)   DOI   ScienceOn
26 K. W. Powers, S. C. Brown, V. B. Krishna, S. C. Wasdo, B. M. Moudgil, and S. M. Roberts, Toxicol. Sci., 90, 296 (2006)   DOI   ScienceOn
27 J. Wang, K. M. Chua, and C. H. Wang, J. Colloid Interf. Sci., 271, 92 (2004)   DOI   ScienceOn
28 S. Sevenson and D. A. Tomalia, Adv. Drug Deliv. Rev., 57, 2106 (2005)   DOI   ScienceOn