• Title/Summary/Keyword: delayed output

Search Result 159, Processing Time 0.026 seconds

Roll Angle Estimation of a Rotating Vehicle in a Weak GPS Signal Environment Using Signal Merging Algorithm

  • Im, Hun Cheol;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.135-140
    • /
    • 2017
  • This paper proposes a signal merging algorithm to increase the signal-to-noise ratio (SNR) of a GPS correlator output to estimate the roll angle of a rotating vehicle in a weak GPS signal environment. Rotation Locked Loop (RLL) algorithm is used to estimate a roll angle using the characteristics that the power of the GPS signal measured at the receiver of a rotating vehicle varies periodically. First, delay times are calculated to synchronize GPS signals using satellites' and receiver's positions and the rotation frequency of a vehicle, and then correlator outputs are delayed in time and merged with each other, resulting in the increase of an SNR in a correlator output. Finally, simulations are conducted and the performance of the proposed algorithm is validated.

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.

Approximation-Based Decentralized Adaptive Output-Feedback Control for Nonlinear Interconnected Time-Delay Systems (비선형 상호 연결된 시간 지연 시스템을 위한 함수 예측 기법에 기반한 분산 적응 출력 궤환 제어)

  • Yoo, Sung-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.174-180
    • /
    • 2012
  • This paper proposes a decentralized adaptive output-feedback controller design for nonlinear interconnected systems with unknown time delays. The interaction terms with unknown delays are related to all states of subsystems. The time-delayed functions are compensated by using appropriate Lyapunov-Krasovskii functionals and function approximation technique. The observer dynamic surface design technique is employed to design the proposed memoryless local controller for each subsystem. In addition, we prove that all signals in the closed-loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin.

Electric Characteristics of the MFC according to different electrode structures and materials (미생물 연료전지의 전극 재료와 구조에 따른 전기적 특성)

  • Choi, Kyu-man
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.36-39
    • /
    • 2014
  • MFC(microbial fuel cell) is the device to produce the electricity by using the microbes which are living in the waste water. In this paper, the electric characteristics of the MFC were investigated according to each different structure and electrode materials. The voltage being reversed phenomenon was observed in the MFC which uses the cupper plate as the cathode material. This result comes from the oxidation reaction of the cupper plate electrode in this MFC. And this MFC has lower output voltage than one that has a platinum plate electrode. The smaller gap distance of the cupper plate electrode of the MFC showed the higher output voltage. The larger electrode area of the cupper plate electrode showed that the reaching time of the output voltage to the maximum value was delayed.

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

Sigma-Delta Modulator using a novel FDPA(Feedback Delay Path Addition) Technique (새로운 FDPA 기법을 사용한 시그마-델타 변조기)

  • Jung, Eui-Hoon;Kim, Jae-Bung;Cho, Seong-Ik
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.511-516
    • /
    • 2013
  • This paper presents a SDM using the FDPA technique. The FDPA technique is the added feedback path which is the delayed path of DAC output. The designed SDM increases the SNR by adding the delayed digital feedback path. The proposed SDM is easily implemented by eliminating the analog feedback path. Through the MATLAB modeling, the optimized coefficients are obtained to design the SDM. The designed SDM has a power consumption of $220{\mu}W$ and SNR(signal to noise ratio) of 81dB at the signal-bandwidth of 20KHz and sampling frequency of 2.56MHz. The SDM is designed using the $0.18{\mu}m$ standard CMOS process.

The comparison of the output characteristics of 2-DOF PID controller in the multivariable flow control system with delayed time (지연시간을 갖는 다변수 유량제어 시스템의 2-자유도 PID 제어기 특성 비교)

  • Kim, Dong-Hwa
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.744-752
    • /
    • 1999
  • In this paper, we studied the response characteristics of $\alpha$, $\beta$ separated type, combined type, PI typed, and feedforward type in 2DOF-PID controller through the simulation and the experiments designed with the multivariable flow control system. The parameters $\alpha$ and $\beta$ give an affect to characteristics of controller in separated type but $\gamma$ does not give an affect to the characteristics of 2-DOF PID. The more $\beta$ increases, the more overshoot decreases and especially, in case of PI type represent clearly. The $\alpha$, $\beta$ separated type has a very small overshoot and its magnitudes in 2-DOF PID onctroller increases in order of $\alpha$, $\beta$ combined type, PI type, feedforward type, conventional type. The response characteristics of simulation are similar to that of experiments but the experimental characteristics in the multivariable flow control system has the delayed response. The time delay of response in experiments depends on 2-DOF parameter $\alpha$, $\beta$, $\gamma$ and the overshoot increase as the $\alpha$, $\beta$, $\gamma$ increase. So, we can have a satisfactory response by tuning D gain.

  • PDF

Time-Delayed and Quantized Fuzzy Systems: Stability Analysis and Controller Design

  • Park, Chang-Woo;Kang, Hyung-Jin;Kim, Jung-Hwan;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.274-284
    • /
    • 2000
  • In this paper, the design methodology of digital fuzzy controller(DFC) for the systems with time-delay is presented and the qualitative effects of the quantizers in digital implementation of a fuzzy controllers are investigated. We propose the fuzzy feed-back controller whose output is delayed with unit sampling period and period and predicted. the analysis and the design problem considering time-delay become very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy system with time-delay is solved by linear matrix inequality(LMI) theory. Furthermore, we analyze the stability of the quantized fuzzy system. Our results prove that when quantization os taken into account, one only has convergence to some small neighborhood about origin. We develop a fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of time-delay and quantization effect. By using the proposed method, we analyze the quantization effect to the system and design a DFC which guarantees the stability of the control system in the presence of time-delay.

  • PDF

Eye Pattern Characteristic Based Active Stabilization Method for Direct Delection Receiver in Differential Phase Shift Key System (차동 위상 변조 전송 시스템에서 수신 신호 눈열림 특성을 이용한 직접 검출 수신단 최적화 및 안정화 제어 연구)

  • Jang, Youn-Seon;Park, Heuk;Kim, Kwang-Joon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.313-318
    • /
    • 2005
  • We propose an active stabilization method for the receiver of NRZ-DPSK transmission. The 1-bit delayed Mach-Zehlder interferometer is thermally controlled to maintain the largest DC component power ratio between the constructive and destructive output ports, for the optimum transmission condition. This method is very cost effective since no additional components are required. Experimental results show that the proposed scheme guarantees error free performance even when there was ~ 1 GHz optical carrier frequency fluctuation in 10 Gbps transmission.

Modeling of GMR Isolator for Data Transmission Utilizing Spin Valves (스핀밸브를 이용한 데이터 전송용 GMR 아이솔레이터의 모델링)

  • Park, S.;Kim, J.;Jo, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • GMR isolator was modeled using a Wheatstone bridge which is profitable for transmitting rectangular wave digital data, and the output voltage characteristics in relation to the input current were investigated in time domain. GMR isolator modeling was divided into two parts, namely magnetic and electric parts. The flow chart of the modeling was drawn in which measured MR curve of the spin valves were incorporated to obtain the electrical voltage output. For magnetic modeling, 3-dimensional model of planar coil was analyzed by FEM method to obtain the magnetic field strength corresponding to the input current. For electric modeling, resistance, inductance and capacitance of the planar coil were calculated and magnetic field waveform was obtained corresponding to the coil current waveform in time domain. Finally, MR-H curves of spin valves and the magnetic field waveform at the spin valves were composited to obtain the output voltage waveform of the isolator. Even though the amplitude of the coil current waveform was increased by 100%, decreased by 90%, or delayed by 10% of the period compared with the input current, similar transmitted output voltage waveform to the input current waveform was obtained due to hysteretic characteristics of the spin valves at the transmission speed of over 400 Mbit/s.