• Title/Summary/Keyword: delay metric

Search Result 93, Processing Time 0.026 seconds

An Analytic Study on Estimating Delay Time in RC-class Interconnects Under Saturated Ramp Inputs (램프 입력에 대한 RC-class 연결선의 지연시간 예측을 위한 해석적 연구)

  • 김기영;김승용;김석윤
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.200-207
    • /
    • 2004
  • This paper presents a simple and fast delay metric RC-class interconnects under saturated ramp inputs. The RC delay metric under saturated ramp inputs, called FDM(Fast Delay Metric), can estimate delay times at an arbitrary node using a simple closed-form expression and is extended from delay metric under step input easily As compared with similar techniques proposed in previous researches, it is shown that the FDM technique complexity for a similar accuracy. As the number of circuit nodes increases, there will be a significant difference in estimation times of RC delay between the previous techniques based on two circuit moments and the FDM which do not depend on circuit moments.

Design of a multipath routing protocol for energy-efficiency and low-delay in duty-cycled wireless sensor networks (듀티사이클 무선센서네트워크에서 저전력과 저지연을 위한 다중경로 라우팅 프로토콜의 설계)

  • Lee, Hyungkeun
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.326-332
    • /
    • 2020
  • This paper presents the design of a routing metric for energy-efficient and low-delay path selection and a new routing protocol utilizing the metric in duty-cycyled wireless sensor networks. The new routing metric based on duty cycle, EDW, can reduce the energy and delay of transmission paths, which represents total waiting time from source to destination due to duty cycle. Therefore, in this paper, we propose a new multipath routing protocol based on cross-layer information utilizing the new routing metric, and simulation results show that the proposed protocol shows better performance of end-to-end delay and energy consumption.

Risk Evaluation of Failure Cause for FMEA under a Weibull Time Delay Model (와이블 지연시간 모형 하에서의 FMEA를 위한 고장원인의 위험평가)

  • Kwon, Hyuck Moo;Lee, Min Koo;Hong, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.83-91
    • /
    • 2018
  • This paper suggests a weibull time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). Assuming three types of loss functions for delayed time in failure cause detection, the risk of each failure cause is evaluated as its occurring frequency and expected loss. Since the closed form solution of the risk metric cannot be obtained, a statistical computer software R program is used for numerical calculation. When the occurrence and detection times have a common shape parameter, though, some simple results of mathematical derivation are also available. As an enormous quantity of field data becomes available under recent progress of data acquisition system, the proposed risk metric will provide a more practical and reasonable tool for evaluating the risks of failure causes in FMEA.

Risk Evaluation Based on the Hierarchical Time Delay Model in FMEA (FMEA에서 계층적 시간 지연 모형에 근거한 위험평가)

  • Jang, Hyeon Ae;Lee, Min Koo;Hong, Sung Hoon;Kwon, Hyuck Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.2
    • /
    • pp.373-388
    • /
    • 2016
  • Purpose: This paper suggests a hierarchical time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). In place of the conventional RPN(risk priority number), a more reasonable and objective risk metric is proposed under hierarchical failure cause structure considering time delay between a failure mode and its causes. Methods: The structure of failure modes and their corresponding causes are analyzed together with the time gaps between occurrences of causes and failures. Assuming the severity of a failure depends on the length of the delayed time for corrective action, a severity model is developed. Using the expected severity, a risk priority metric is defined. Results: For linear and quadratic types of severity, nice forms of expected severity are derived and a meaningful metric for risk evaluation is defined. Conclusion: The suggested REM(risk evaluation metric) provides a more reasonable and objective risk measure than the conventional RPN for FMEA.

Routing Metric to Recognize Traffic Interference In Wireless Mesh Networks (무선 메쉬 네트워크에서 트래픽 간섭 인지 라우팅 메트릭 기법)

  • Lee, Sung-Hun;Lee, Hyung-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.59-64
    • /
    • 2009
  • This paper is intended to study how well the routing protocol supplied in wireless mesh networks can evade interference path along the applied routing metric. Wireless mesh networks, unlike existing network techniques, has the characteristics that node movement is less and energy effect is limited. Therefore. this type of network requires path configuring technique to reflect such network characteristics and new routing metric to determine proper path. Routing metric proposed recently is designed to produce link quality accurately, but it configures path not considering the traffic situation of adjacent nodes. Thus. this technique has the problems of reduced transfer rate and delay between terminals occurring due to frequent traffic chaos by the interference of adjacent nodes. Therefore, this paper proposes metric that configures routing path by finding like metric that can transfer data effectively by considering the traffic situation of adjacent nodes. We confirmed through simulation that the proposed routing metric reduces the delay between terminals via the path that evades the traffic interference of adjacent node.

A Novel Routing Algorithm Based on Load Balancing for Multi-Channel Wireless Mesh Networks

  • Liu, Chun-Xiao;Chang, Gui-Ran;Jia, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.651-669
    • /
    • 2013
  • In this paper, we study a novel routing algorithm based on load balancing for multi-channel wireless mesh networks. In order to increase the network capacity and reduce the interference of transmission streams and the communication delay, on the basis of weighted cumulative expected transmission time (WCETT) routing metric this paper proposes an improved routing metric based on load balancing and channel interference (LBI_WCETT), which considers the channel interference, channel diversity, link load and the latency brought by channel switching. Meanwhile, in order to utilize the multi-channel strategy efficiently in wireless mesh networks, a new channel allocation algorithm is proposed. This channel allocation algorithm utilizes the conflict graph model and considers the initial link load estimation and the potential interference of the link to assign a channel for each link in the wireless mesh network. It also utilizes the channel utilization percentage of the virtual link in its interference range as the channel selection standard. Simulation results show that the LBI_WCETT routing metric can help increase the network capacity effectively, reduce the average end to end delay, and improve the network performance.

Load Balancing and Interference Delay Aware Routing in IoT Aware Wireless Mesh Networks

  • Jilong Li;Murad Khan;Byeongjik Lee;Kijun Han
    • Journal of Internet Technology
    • /
    • v.20 no.1
    • /
    • pp.293-300
    • /
    • 2019
  • The Internet of Things (IoT) enables embedded devices to connect to the internet either through IP or the web in a physical environment. The increase in performance of wireless access services, adaptive load balancing, and interference routing metric becomes the key challenges in Wireless Mesh Networks (WMN). However, in the case of IoT over WMN, a large number of users generate abundant net flows, which can result in network traffic jam. Therefore, in this paper, we propose a Load Balancing and Interference Delay Aware routing metric algorithm to efficiently address the issues present in the current work. The proposed scheme efficiently utilizes the available mesh station queue information and the number of mesh stations suffering from channel interference in the available path. The simulations results show that the proposed scheme performed superior to the existing routing metrics present in the current literature for similar purposes.

A New Routing Protocol in Wireless Ad-hoc Networks with Multiple Radios and Channels

  • Ko, Sung-Won;Cho, Jeong-Hwan;Hong, Kwon-Eui
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.26-40
    • /
    • 2010
  • We propose a new routing protocol, MCQosR, that is based on bandwidth estimation, admission control, and a routing metric, MCCR - suitable for wireless ad-hoc networks with multiple radios and channels. To use the full capacity of a wireless link, we assume a node with multiple radios for full duplex operation, and a radio using multiple channels to exclude route-intra interference. This makes it possible to use the capacity of a wireless link. Then, to provide bandwidth and delay guarantee, we have a radio with a fixed channel for layer-3 data reception at each node, used to estimate the available bandwidth and expected delay of a wireless link. Based on the estimate of available bandwidth and delay, we apply the call admission control to a new call requiring bandwidth and delay guarantee. New calls with traffic that will overflow link or network capacity are rejected so the accepted calls can use the required bandwidth and delay. Finally, we propose a routing metric, MCCR, which considers the channel contentions and collisions of a wireless link operating in CSMA/CA. MCCR is useful for finding a route with less traffic and distributing traffic over the network to prevent network congestion as much as possible. The simulation of the MCQosR protocol and the MCCR metric shows traffic is distributed and guaranteed service is provided for accepted calls.

Routing considering Channel Contention in Wireless Communication Networks with Multiple Radios and Multiple Channels (다수 라디오와 채널을 갖는 무선통신망에서 채널경쟁을 고려한 라우팅)

  • Ko, Sung-Won;Kang, Min-Su;Kang, Nam-Hi;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.5
    • /
    • pp.7-15
    • /
    • 2007
  • In wireless communication networks, single-radio single-channel architecture degrades throughput and end-to-end delay due to half-duplex transmission of wireless node and route intra interference. Also, In contention-based MAC (Medium Access Control) architecture, channel contention reduces throughput and packet collision enlarges end-to-end delay. In this paper, we use multi-radio multi-channel architecture which will make wireless node to operate in full duplex mode, and exclude route intra interference. Based on this architecture, we propose a new link metric, ccf which reflects the characteristics of a contention-based wireless link, and propose a routing path metric MCCR considering channel switching delay and route intra interference. MCCR is compared with MCR by simulation, the performance of a route established by MCCR outperforms the performance of a route by MCR in terms of throughput and end-to-end delay.

Development of an Perceptual Video Quality Assessment Metric Using HVS and Video Communication Parameters (인간 시각 특성과 영상통신 파라미터를 이용한 동영상 품질 메트릭 개발)

  • Lee, Won-Kyun;Jang, Seong-Hwan;Park, Heui-Cheol;Lee, Ju-Yong;Suh, Chang-Ryul;Kim, Jung-Joon
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.155-158
    • /
    • 2007
  • In this paper, we solved the underestimation problem of PSNR, which is caused by repeated frames, by easily synchronizing original and decoded frames using the proposed marks. Also we propose full-reference system which can be applied for measuring the quality of various kinds of video communication systems, e.g. wireless handsets, mobile phones and applications for PC. In addition, we propose a new video quality assessment metric using video communication parameters, i.e. frame rate and delay. According to the experiments, the proposed metric is not only appropriate for real-time video communication systems but also shows better correlation with the subjective video quality assessment than PSNR. The proposed measuring system and metric can be effectively used for measuring and standardizing the video quality of future communications.

  • PDF