Routing considering Channel Contention in Wireless Communication Networks with Multiple Radios and Multiple Channels

다수 라디오와 채널을 갖는 무선통신망에서 채널경쟁을 고려한 라우팅

  • 고성원 (김포대학 인터넷정보과) ;
  • 강민수 (숭실대학교 정보통신전자공학부) ;
  • 강남희 (가톨릭대학교 컴퓨터정보공학부) ;
  • 김영한 (숭실대학교 정보통신 전자공학부)
  • Published : 2007.05.25

Abstract

In wireless communication networks, single-radio single-channel architecture degrades throughput and end-to-end delay due to half-duplex transmission of wireless node and route intra interference. Also, In contention-based MAC (Medium Access Control) architecture, channel contention reduces throughput and packet collision enlarges end-to-end delay. In this paper, we use multi-radio multi-channel architecture which will make wireless node to operate in full duplex mode, and exclude route intra interference. Based on this architecture, we propose a new link metric, ccf which reflects the characteristics of a contention-based wireless link, and propose a routing path metric MCCR considering channel switching delay and route intra interference. MCCR is compared with MCR by simulation, the performance of a route established by MCCR outperforms the performance of a route by MCR in terms of throughput and end-to-end delay.

무선통신망에서 단일 라디오와 채널의 사용은 무선 노드의 반이중 전송 및 경로의 내부간섭으로 통신망의 처리율 및 단대단 지연 특성을 저하시킨다. 또한, 채널경쟁기반의 무선통신망에서 임의노드 주변에 동일 채널을 경쟁하는 노드가 많으면 경쟁으로 인한 대역폭 감소와 전송 충돌로 인한 지연이 발생하여 통신망의 성능을 저하시킨다. 본 논문에서는 다수 라디오와 채널을 사용하여 무선노드의 전이중전송이 가능하게 하고 경로내부간섭을 배제할 수 있도록 라디오와 채널의 기능을 설정하고 큐잉이론의 해석모델을 이용하여 무선구간의 채널 경쟁 및 충돌을 반영한 무선구간 메트릭 ccf 및 ccf와 함께 채널변경지연, 경로내부간섭을 반영한 경로설정 메트릭 MCCR을 제안한다. MCCR과 MCR을 시뮬레이션을 사용하여 비교하였으며 MCCR을 사용하여 설정한 경로가 MCR보다 통신망 성능을 향상시키는 결과를 얻었다.

Keywords

References

  1. Jinyang Li, Charles Blake, Douglas S. J. De Coute, Hu Imm Lee, and Robert Moriss, 'Capacity of Ad hoc Wireless Networks,' Proceedings of the 7th ACM International Conference on Mobile Computing and Networking (MobiCom '01), July, 2001 https://doi.org/10.1145/381677.381684
  2. Juming So and Nitin H. Vaidya, ' Multi-Channel MAC for ad hoc Networks : Handling Multi-Channel Hidden Terminals using a single Transceiver,' in Mobihoc, 2004 https://doi.org/10.1145/989459.989487
  3. P. Kyasanur and N. H. Vaidya, 'Routing and Link-layer protocols for Multi-Channel Multi-interface Ad hoc Wireless Networks,' Mobile Computing and Communications Review, 10(1):32-43, Jan 2006 https://doi.org/10.1145/1119759.1119762
  4. Sungwon Ko, 'Call Admission Control in Wireless Ad-hoc Networks with Multiple Channels and Radios,' Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, Vo1.21, No.4, May, 2007 https://doi.org/10.5207/JIEIE.2007.21.4.104
  5. Richard Draves, Jitendra Padhye and Brian Zill, 'Routing in multi-radio, multi-hop wireless mesh networks,' in ACM Mobicom, 2004 https://doi.org/10.1145/1023720.1023732
  6. IEEE Standard for wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std: 802.11, 1999
  7. D. De Couto, D. Aguayo, H. Bicket, and R. Morris, 'High-throughput path metric for multi-hop wireless routing,' In MOBICOM, 2003 https://doi.org/10.1145/938985.939000
  8. Wei Zhou, Dongbo Zhang, and Daji Qiao, 'Comparative Study of Routing Metrics for Multi-Radio Multi-Channel Wireless Networks,' WCNC, Vol1. pp. 270-275, April 2006 https://doi.org/10.1109/WCNC.2006.1683476
  9. H. Kim and J. C. Hou, 'Improving Protocol Capability with Model-based Frame Scheduling in IEEE 802-11-operated WLANs,' MobiCOM'03, pp.190-204, San Diego, CA, September 2003 https://doi.org/10.1145/938985.939005
  10. G. Bianchi, 'Performance Analysis of the IEEE 802.11 Distributed Coordination Function,' IEEE Journal on Selected Areas in Communications, 18(3), pp. 535-547, March 2000 https://doi.org/10.1109/49.840210
  11. QualNet Simulator, http://www.scalable-networks.com/, Online Link