• Title/Summary/Keyword: delamination of concrete structure

Search Result 22, Processing Time 0.028 seconds

Visualization of Delamination Region in Concrete Structures using Mode Shapes of Delaminated Concrete Section (II) : Impact-Echo Test (박리된 콘크리트의 진동 모드 형상을 이용한 콘크리트 구조물 박리 손상 영역 가시화 (II) : 충격-반향 시험)

  • Oh, Taekeun;Shin, Sung Woo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.36-41
    • /
    • 2013
  • Previous study showed that delamination region in concrete structures can be successfully visualized using mode shapes of delaminated concrete section. However, modal tests for this purpose to obtain mode shapes of the delaminated concrete section may not be applicable in practice since, to correctly obtain the mode shapes of the section, the location and the shape of the delamination region in a structure should be known in advance. Unfortunately those are normally unknown in a real structure. Therefore, a moving forward test method may be useful to obtain the mode shapes of the concrete section when the location and the shape of the delamination region are not known. In this study, impact-echo testing based mode shape estimation technique is proposed and experimentally validated for visualization of delamination region.

Shear Strength Prediction of RC Beams Strengthened by Externally Bonding Method (접착공법에 의해 전단보강된 RC보의 전단강도 예측)

  • 박성민;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.69-74
    • /
    • 2001
  • Steel plate or fiber composite plate are mainly used in externally bonding method. Shear strengthening by externally bonding method is to confirm shear safety and to avoid brittle failure. In case of strengthening by externally bonding method, a failure of structure occurs frequently due to delamination between strengthening plate and concrete. Therefore, it is important to consider the delamination in the strengthening design. The objective of this study is to propose a modified shear strength evaluation by considering the delamination. The delamination criteria of strengthening plate is established by the ultimate strain and shear stress. And shear strength of RC beams is proposed in terms of the delamination criteria. The proposed shear strength is compared with test results and verified through the comparison.

  • PDF

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

Delamination Detection of Retrofitted Concrete Using Horn Antenna (Horn Antenna를 이용한 콘크리트 보강재의 박리탐사 실험)

  • Rhim, Hong-Chul;Cho, Young-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.409-416
    • /
    • 2007
  • In accordance with the increased usage of reinforcing materials such as carbon fibers and glass fibers, delamination detection between concrete and the reinforcing material is needed as such delaminations may be a major cause for strength reduction or failure of a structure. In this work, 15 GHz center frequency with 10 GHz band width horn antenna was used to detect delamination between concrete and carbon fibers or glass fibers. The specimens measured $600\;(length)\;{\times}\;600\;(width)\;{\times}\;100\;(thickness)\;mm$, and glass fibers and carbon fibers with a thickness of 1.5 mm were attached on the specimens' surfaces using epoxy. In addition, artificial delaminations of size $50\;(length)\;{\times}\;50\;(width)\;mm$ were placed in the middle of the specimen with thickness of 2, 4, 6 mm respectively together with a 2 mm delamination projecting upwards from the surface of the concrete. Therefore a total of 8 specimens were used, 4 specimens for glass fiber reinforced concrete and 4 for carbon fiber reinforced concrete, containing delaminations as described above. The experiment results were derived by using the difference of area under the curved graph. According to experimental results artifical delaminations were identified in both fiber reinforced and carbon reinforced specimens and these results could contribute to further development of delamination detection technology.

A Study on the Inspection of Tile Delamination Using Infrared-Ray Method. (열적외선 장비를 활용한 타일박리 조사에 관한 연구)

  • Oh, Kwang-Chin;Choi, Jae-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.511-514
    • /
    • 2005
  • Recently, to obtain the reliable data on the state of the structure, various non-destructive techniques are available. The infrared thermography technique is used in detection of cracks, flaws of concrete structures and buildings. In this paper the infrared thermography technique using the difference of surface temperature was studied. Also this paper is case study that the inspection of building's tile using infrared thermal video.

  • PDF

Shrinkage and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물용 라텍스개질 보수용 모르타르의 수축 및 내구성능 평가)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.23-30
    • /
    • 2007
  • This research was to evaluate the shrinkage and durability performance of latex modified repair mortar and to improve the service lift of the agricultural concrete structures. The shrinkage characteristics of the repair material creates the delamination of repair materials and existing concrete. It may reduce the service life of structures. Also the reduction of durability performance of the repair materials induces the destruction of the repaired concrete structures at early stage. In this research, plastic and drying shrinkage, thermal expansion coefficient for shrinkage properties, durability performance, permeability, repeated freezing and thawing, and resistance of chemical solution test were performed. Test results showed that the latex modified repair mortar indicated the shrinkage amount which the delamination does not happen, and the latex modified repair mortar appeared excellent long-term durability performance which can increase the service life.

Damage detection in beams and plates using wavelet transforms

  • Rajasekaran, S.;Varghese, S.P.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.481-498
    • /
    • 2005
  • A wavelet based approach is proposed for structural damage detection in beams, plate and delamination of composite plates. Wavelet theory is applied here for crack identification of a beam element with a transverse on edge non-propagating open crack. Finite difference method was used for generating a general displacement equation for the cracked beam in the first example. In the second and third example, damage is detected from the deformed shape of a loaded simply supported plate applying the wavelet theory. Delamination in composite plate is identified using wavelet theory in the fourth example. The main concept used is the breaking down of the dynamic signal of a structural response into a series of local basis function called wavelets, so as to detect the special characteristics of the structure by scaling and transformation property of wavelets. In the light of the results obtained, limitations of the proposed method as well as suggestions for future work are presented. Results show great promise of wavelet approach for damage detection and structural health monitoring.

Anchor Design to Prevent Debonding of Repair Mortar in Repaired Concrete Members

  • Choi Dong-Uk;Lee Chin-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.637-643
    • /
    • 2005
  • Reinforced concrete beams or slabs are often strengthened or repaired using polymer modified cement concrete Stresses can develop in the structure by ambient temperature changes because thermal coefficients of the repair material and the existing concrete are typically different. Especially, shear stress often causes debonding of the interface. In this study, a rational procedure was developed where anchors can be designed in strengthened or repaired concrete members to prevent debonding at the interface. The current design procedure considers thicknesses and elastic moduli of the repair material and existing concrete, ambient temperature change, length, and beam-vs.-slab action. The procedure is also applicable to stresses developed by differential drying shrinkage.

Repair of Ka-Hwa Highway Bridge damaged by Chloride Attack applied Cathodic Protection (가화천교 내염보수를 위한 전기방식공법 적용)

  • Han BogKyu;Chi HanSang;Cheong HaiMoon;Ahn TaeSong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.519-522
    • /
    • 2005
  • Ka-Hwa highway bridge, located in a corrosive marine environment, had been examined the current condition of reinforcement corrosion in concrete throughout half-cell potentials, electrical resistivity, chloride contamination of concrete, and visual observation. According to the test, the chloride corrosion reinforced concrete structure is not only the protecting film around the reinforcement is deteriorated but also corrosion activity develops, for example, delamination areas of concrete. The purpose of this paper is to report the effects of Ka-Hwa highway bridge damaged by chlodide attack and to present the results of repair of Ka-Hwa highway concrete bridge in domestic marine environment.

  • PDF

Fiber optic smart monitoring of concrete beam retrofitted by composite patches

  • Kim, Ki-Soo;Chung, Chul;Lee, Ho-Joon;Kang, Young-Goo;Kim, Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.347-356
    • /
    • 2004
  • In order to extend the lifetime of buildings and civil infrastructure, patch type fibrous composite retrofitting materials are widely used. Retrofitted concrete columns and beams gain stiffness and strength, but lose toughness and show brittle failure. Usually, the cracks in concrete structures are visible to the naked eye and the status of the structure in the life cycle is estimated through visual inspections. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensable and self diagnosis method with optical fiber sensors is very useful. In this paper, we try to detect the peel out effect and find the strain difference between the main structure and retrofitting patch material when they separate from each other. In the experiment, two fiber optic Bragg grating sensors are applied to the main concrete structure and the patching material separately at the same position. The sensors show coincident behaviors at the initial loading, but different behaviors after a certain load. The test results show the possibility of optical fiber sensor monitoring of beam structures retrofitted by the composite patches.