• Title/Summary/Keyword: deformed angle

Search Result 107, Processing Time 0.026 seconds

A Study on the Analysis of Foot Shape (I) -on Classification of Foot Type- (발의 형태분석에 관한 연구(I) -발의 형 분류를 중심으로-)

  • Moon Myeng-ok;Kwon Young-suk
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.12 no.1 s.26
    • /
    • pp.45-52
    • /
    • 1988
  • To classify the foot type, direct measurements, metatarso-phalanx angle and foot print angle of the right and left foot were measured and analyzed. The results are as follows. 1. The correlation coefficients between right and left foot were high degree, and except medial malleous height, the diffences between right and left foot are not significant. 2. The correlation coefficient among direct measurements of the foot are high degree, tut the correlation coefficients between direct measurements and metatarso-phalanx angle and foot print angle are no or low degree. Therefore, to recognize the foot type, the direct measurements, metatarso-phalanx angle and foot print angle need to be measured independently. 3. According to foot width/foot $length{\times}100$ which is the slender degree of foot, three groups are distinguished: one is slender type of which foot width/foot $length{\times}100$ is less than $40.14\%$, two is standard type of which foot width/foot $length{\times}100$ is $40.14\%{\~}44.30\%$, three is broad type of which foot width/foot $length{\times}100$ is more than $44.30\%$. 4. On the photographs metatarso-phalanx angle was measured, and two groups are distinguished: one is normal type of which the metatarso-phalanx angle is more than $160^{\circ}$ and the other is the deformed type of which the metatarso-Phalanx angle is less than $159^{\circ}$. 5. By foot print angle $30^{\circ}$ which need reformation of the foot, two groups are distinguished: one is normal foot print angle of which the angle is more than $30^{\circ}$ and the other is flat foot print angle of which the angle is less than $30^{\circ}$. 6. Classifications by foot width/foot $length{\times}100$, metatarso-Phalanx angle and foot Print angle are put together, and then foot types are classified into 12 groups such as Table 11.

  • PDF

Structural Behaviors for Pressurized Fabric Leaning Arches

  • Kim, Jae Yeol
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • In this paper, a pressurized single vertical arch and a pressurized leaning arch composed of flexible fabric material are considered. These arches have also been considered as a possible support structure for the tent-like structures. Two different boundary conditions are considered in leaning arches with fixed bases and pinned bases. The behaviors of the leaning arches are investigated for two tilt angles as 15, 30. For each angle, two loading conditions are considered as uniformly distributed load and wind loads. The F.E.M. is used through the all analysis procedures. For the results, load-deflection relationships, buckling modes, differences between two boundary conditions and deformed configurations are discussed.

  • PDF

A Study on the Side Collision Accident Reconstruction Using 3-Dimensional Crash Analysis (3차원 충돌해석 정보를 이용한 측면 충돌 사고 재구성)

  • Jang, In-Sik;Kim, Il-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.52-63
    • /
    • 2008
  • The side collision reconstruction algorithm is developed using three dimensional car crash analysis. Medium size passenger car is modeled for finite element analysis. Total 24 side collision configurations, four different speed and six different angle, are set up for making side collision database. Deformation index and degree index are built up for each collision case. Deformation index is a kind of deformation estimate averaging displacement of side door of crashed car from finite element analysis result. Angle index is constructed measuring deformed angle of crashing car. There are two kinds of angle index, one is measured at driver's side and the other is measured at passenger's side. Also a collision analysis information in side of cars is used for giving a basis for scientific and practical reason in a reconstruction of the car accident. The analysis program, LS-DYNA3D is utilized for finite element analysis program for a collision analysis. Those database are used for side collision reconstruction. Side collision reconstruction algorithm is developed, and applied to find the collision conditions before the accident occurs. Three example collision cases are tried to check the effectiveness of the algorithm. Deformation index and angle index is extracted for the case from the analysis result. Deformation index is compared to the established database, and estimated collision speed and angle are introduced by interpolation function. Angle index is used to select a specific collision condition from the several available conditions. The collision condition found by reconstruction algorithm shows good match with original condition within 10% error for speed and angle. As a result, the calculation from the reconstruction of the situation is reproducing the situation well. The performance in this study can be used in many ways for practical field using deformation index and degree index. Other different collision situations may be set up for extending the scope of this study in the future.

Sectional forming analysis by membrane finite elements considering bending effects (굽힘효과를 고려한 박막 유한요소에 의한 단면 성형해석)

  • Kim, Jun-Bo;Lee, Gwang-Byeong;Keum, Yeong-Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.493-503
    • /
    • 1998
  • The sectional forming analysis considering bending effects from the geometrically deformed shape of two linear membrane finite elements(called super element) was performed under plane strain assumption for analyzing forming processes of an arbitrarily shaped draw-die. For the evaluation of bending effects, the bending equivalent forces are calculated from the bending moment computed using the changes in the interior angle at the middle node of super element, and are agumented to the membrane stretch forces. In order to verify the validity of the bending formulation, the simulation results for the stretch, draw, and bend sections were compared with membrane analysis results and measurements.

Bond Analysis of Ribbed Reinforcing Bars

  • Park, Oan-Chul
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.19-25
    • /
    • 2001
  • A simple expression to predict bond strength of reinforcing bars with rib deformation to the surrounding is derived for the case of splitting bond failure. Finite element analysis is used to model the confining behavior of concrete cover. The roles of the interfacial properties, specifically, the friction coefficient, cohesion, the relative rib area and the rib face angle are examined. Values of bond strength obtained using the analytical model are in good agreement with the bond test results from the previous studies. The analytical model provides insight into interfacial bond mechanisms and the effects of the key variables on the bond strength of deformed bars to concrete. Based on the comparison between the analytical results and the test results, the values of cohesion, coefficient of friction, and the effective rib face angle are proposed.

  • PDF

High Speed Impact and Penetration Analysis using Explicit Finite Element Method (외연 유한요소 기법을 사용한 고속충돌 및 관통해석)

  • Paik, Seung-Hoon;Kim, Seung-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.5-13
    • /
    • 2005
  • The impact of a long-rod penetrator into oblique plates with combined obliquity and yaw is investigated. The study was done using a newly developed three dimensional dynamic and impact analysis code, which uses the explicit finite element method. Through the comparison of simulation result with experimental result and other code's result, the adaptability and accuracy of the developed code is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. As a result of comparison, it has found that deformed shape, residual length and velocity, rotational velocity of long-rod show good agreement with experimental data. Through this study, the applicability and accuracy of the code as a metallic armour system design tool is verified.

Simulation of Ultrasonic Stress During Impact Phase in Wire Bonding

  • Mayer, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2013
  • As thermosonic ball bonding is developed for more and more advanced applications in the electronic packaging industry, the control of process stresses induced on the integrated circuits becomes more important. If Cu bonding wire is used instead of Au wire, larger ultrasonic levels are common during bonding. For advanced microchips the use of Cu based wire is risky because the ultrasonic stresses can cause chip damage. This risk needs to be managed by e.g. the use of ultrasound during the impact stage of the ball on the pad ("pre-bleed") as it can reduce the strain hardening effect, which leads to a softer deformed ball that can be bonded with less ultrasound. To find the best profiles of ultrasound during impact, a numerical model is reported for ultrasonic bonding with capillary dynamics combined with a geometrical model describing ball deformation based on volume conservation and stress balance. This leads to an efficient procedure of ball bond modelling bypassing plasticity and contact pairs. The ultrasonic force and average stress at the bond zone are extracted from the numerical experiments for a $50{\mu}m$ diameter free air ball deformed by a capillary with a hole diameter of $35{\mu}m$ at the tip, a chamfer diameter of $51{\mu}m$, a chamfer angle of $90^{\circ}$, and a face angle of $1^{\circ}$. An upper limit of the ultrasonic amplitude during impact is derived below which the ultrasonic shear stress at the interface is not higher than 120 MPa, which can be recommended for low stress bonding.

Development of GSCAD Template Rule for Hull Plate Forming (GSCAD를 이용한 Template 기능 개발 및 적용)

  • Yoon, Jong-Sung;Park, Ji-Hyun;Myoung, Hee-Keon;SaKong, Gae-Wan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.32-35
    • /
    • 2011
  • Template has been widely used for hull forming process in most of shipyards. It is used to estimate the curvature of deformed shape in comparison with design shape. SHI (Samsung Heavy Industry) had used AutoKon system for ship manufacturing design in the past. The AutoKon used the global coordinate system of ship (frame, water line and so on) to create template data. It brought the mismatched angles between templates and a curved shell plate. The mismatched angle is measured by forming worker to place template on shell forming stage. However, the mismatched angle is difficult to place template with exactly required angle because the shell plates have various curvature and size. It causes incorrect shape of formed shell plates. The attached angle of template should be 90 degree to place template easily on forming shell plates. Currently, SHI has been applied GSCAD for ship manufacturing design process which is 3D solid modeling system. The GSCAD is the rule-based system which can automate 3D modeling and control the manufacturing data by rule. The rule can easily provide methods to create and automate template object with regular attached angle in comparison with AutoKon system. Therefore, SHI developed new template rule which it can automatically create template object with regular attached angle in GSCAD.

  • PDF

Net Shapes of the Model Set Net in the Flow (흐름에 대한 모형 정치망의 형상 변화)

  • Kim, Boo-Young;Yun, Il-Bu;Kwon, Byeong-Guk;Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.104-114
    • /
    • 2004
  • A study was carried out to estimate the deformation of the set net according to the current by the model test in the circulation water channel. The tension of the frame line and the variation of net shapes were measured to investigate the deforming of the model set net in the flow. The results are obtained as follows; 1. The tensions (y) of the frame line according to the flow speed(x) from 0.0m/s to 0.6m/s were expressed by the experimental equation as follow : y= 1814.1x+115.12 2. In case of the upperward flow with fish court net, deformed angle in the upperward net was changed from 0$^{\circ}$ to 79$^{\circ}$, the inclined passage net was from 0$^{\circ}$ to 56$^{\circ}$. Besides, the depth ratio of the first bag net changed from 1.0 to 0.42 and the second bag net was from 1.0 to 0.41, and deformed angle in the downward of the bag net was from 0$^{\circ}$ to 87$^{\circ}$. 3. In case of the upperward flow with bag net, deformed angle in the upperward net was changed from 0$^{\circ}$ to 60$^{\circ}$, the inclined passage net was from 0$^{\circ}$ to 13$^{\circ}$. Besides, the depth ratio of the first bag net changed from 1.0 to 0.27 and the second bag net was from 1.0 to 0.15. In the flow speed 0.3m/s, the inclined passage net rised up to the entry of the bag net and then prevented it more over 90% in 0.5m/s. A deformed angle in the downward of the fish court net was from 0$^{\circ}$ to 58$^{\circ}$. 4. To minimize the deformation of each part in model set net, it needs to attach the moving weight out of the fish court net, inclined passage net and bag net. Besides, it needs to adjust the tension of the net twine for the maintenance of the shape.

Effects of Mo additions on the room-temperature deformation behavior of polysynthetically twinned (PST) crystals of TiAl

  • O, Myeong-Hun;Kim, Min-Cheol;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 1995
  • The effects of Mo additions on the microstructure and the room temperature deformation behavior of polysynthetically twinned (PST) crystals of TiAl were studied in order to get a basic conception for alloying additions on the two-phase TiAl compounds with the lamellar structure. It was found that the Mo additions in TiAl PST crystals increase both the yield stress and tensile elongation to fracture but the increase in yield stress deppend on the angle $\Phi$at which the lamellar boundaries lie from the loading axis. The large difference in yield stress between specimens deformed parallel($\Phi = 0^\circ$)or perpendicular($\Phi = 90^\circ$) to the loading axis and those deformed in intermediate orientations could be plained by the difference in Mo content between the TiAl and the $$Ti_{3}Al$ phases. It was also found that the Mo-doped specimens with intermediate orientation fail by cracking zigzag across to the lamellar boundaris, which is the same fracture mode as that of binary specimens with intermediate orientations tested in vacuum This suggests that Mo atoms are thought to play a role to reduce the environmental embrittlement of binary PST crystals, resulting in increasing the tensile ductility.

  • PDF