• Title/Summary/Keyword: deformation of bars

Search Result 161, Processing Time 0.027 seconds

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.

Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head (멀티 텐던 앵커헤드의 변형을 이용한 텐던의 초기 긴장력 추정)

  • Park, Jang Ho;Cho, Jeong-Rae;Park, Jaegyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.581-588
    • /
    • 2014
  • The PSC bridges have recently been widely used in Korea. The PSC bridge is a structure whose performance is improved through the use of tendons and steel bars in deflection and cracking characteristics of the concrete. Therefore, measurement or estimation of the load acting on tendon is important in order to maintain the PSC bridges efficiently and safely. This paper deals with a numerical study on the deformation of a multi-tendon anchor head in order to verify the relationship between the load acting on tendon and the deformation of anchor head. All kinematics, material properties and contact nonlinearity are included for the precise analysis and numerical studies are performed by Abaqus. From the numerical results, it is verified that the hoop strain is most useful in the estimation of the load acting on tendon and strains are affected by various parameters such as friction coefficient, boundary conditions, and arrangement.

A Discrete Analysis of Dynamic Plastic Response of Beam-Columns (Beam-Column의 동적(動的) 역성(逆性) 응답(應答)에 관한 이산화(離散化) 해석(解析))

  • Sung-Hwan,Park;Chang-Doo,Jang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.43-51
    • /
    • 1987
  • In this paper, dynamic elastic, plastic response of beam-columns is analysed using discrete models. composed of rigid bars and springs. The equation of motion is formulated including the shear deformation effect, and the stress change of yielding points is calculated with various yielding criteria. The effect of initial axial force is considered by two ways: (1) including the effect in interaction curve only. (2) including the effect directly in the equation of motion in terms of initial stiffness method is also used in nonlinear interaction procedure. It is found that this model is very effective in analysing not only the plastic response but the elastic response, and present method is more efficient than Finite Element Method from the viewpoint of calculation time and accuracy.

  • PDF

Analysis of Slope Stability by the Distinct Element Method(Application to the Toppling Mechanisms) (개별요소법에 의한 사면 안정성 연구(토플링 파괴 메카니즘에 응용))

  • 한공창
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.96-107
    • /
    • 1993
  • This paper deals with the analysis of rock slope stability using the distinct element method. This method consists in analysis of the interaction of discrete block assemblage delimited by elementary joints, which permits to consider the heterogeneous, anisotropic and discontinuous features of the rock mass. In particular, we were able to show that this method, and especially the BRIG3D software, is an outstanding tool which gives informations of greatest interest in order to analyze the toppling mechanisms. We have confirmed the fundamental role of the rock mass structure with different simulations. In the case of toppling phenomena, the essential parameter is the dip of major discontinuities. It has an influence on the intensity and volume of deformations. The anisotropic and heterogeneous features of the rock mass play also an important role. It is proved by insertion of thick rock bars in the structure or varying rock block sizes in the mass. These models modified considerably the stress distribution and the deformation distribution. Finally, we have analyzed the influence of mechanical parameters such as friction angle and tangential stiffness.

  • PDF

Bond and ductility: a theoretical study on the impact of construction details - part 2: structure-specific features

  • Zwicky, Daia
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.137-149
    • /
    • 2013
  • The first part of this two-part paper discussed some basic considerations on bond strength and its effect on strain localization and plastic deformation capacity of cracked structural concrete, and analytically evaluated the impacts of the hardening behavior of reinforcing steel and concrete quality on the basis of the Tension Chord Model. This second part assesses the impacts of the most frequently encountered construction details of existing concrete structures which may not satisfy current design code requirements: bar ribbing, bar spacing, and concrete cover thickness. It further evaluates the impacts of the additional structure-specific features bar diameter and crack spacing. It concludes with some considerations on the application of the findings in practice and an outlook on future research needs.

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

FSI Analysis of Piston Tilting for Pneumatic Actuator (공압 액추에이터의 피스톤 틸팅에 관한 FSI 해석)

  • Jang, Sung-Cheol;Jung, Won Taick;Park, Woon-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.144-153
    • /
    • 2016
  • In this research performed on a pneumatic actuator, the air flow entering and exiting the cylinder, and the motion and deformation characteristics of the piston during operation of the actuator, were predicted. This was carried out by utilizing an FSI(Fluid-Structural Interaction) analysis technique that incorporates principles in computational fluid dynamics and structural stress analysis, and potential performance degradation factors were examined. Analysis results indicated that performance improvements could be made through design modifications. These include adding an inlet and outlet on the upper and lower sections of the cylinder in the conventional model, and increasing the number of sites for piston guide bars from three to four.

Materials Properties of Gas Atomized and Extruded Mg-Zn-Y Alloys (가스분무 Mg-Zn-Y 합금분말 및 압출재의 특성)

  • Chae, Hong-Jun;Lee, Jin-Kyu;Bae, Jung-Chan;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.427-431
    • /
    • 2006
  • Mg-4.3Zn-0.7Y (at%) alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of atomized powders and those extruded bars was examined using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain size of the powders was coarsen as the initial powder size increased. After the extrusion, the grain size became fine due to the severe plastic deformation during the extrusion with the ratio of 10:1. Both the ultimate strength and elongation were enhanced with the decrease of initial particle size.

A Study on the Local Buckling Collapse Behavior of an Aluminum Square Tube Beam under a Bending Load (굽힘하중을 받는 알루미늄 사각관 보의 국부적 좌굴붕괴 거동에 관한 연구)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2011-2018
    • /
    • 2003
  • To analyze the bending collapse behavior of an aluminum square tube beam under a bending load, a finite element simulation for the four-point bending test has been performed. Using an aluminum tube beam specimen partly inserted with two steel bars, the local buckling deformation near the center of the tube beam was induced. The maximum bending load and the bending collapse behavior obtained from the numerical simulation were in good agreement with experimental results. Using a combination of the four-point bending test and its finite element simulation, analysis of the local buckling and the accompanied bending collapse behavior of aluminum tube beam could be quantitative accomplished.

A Study on the Structural Behavior of the Composite Slabs using the Metal Form Deck Plate (일반거푸집용 데크플레이트를 이용한 합성슬래브의 구조적 거동에 관한 연구)

  • KWON, Yong Keun;KANG, Do An;CHOI, Sung Mo;EOM, Chul Hwan;CHOI, Oan Chul;MOON, Tae Sup;KIM, Kyu Suk;KIM, Duck Jae;KIM, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.67-78
    • /
    • 1996
  • This paper provides the results of a study on the structural behavior of the composite slabs using the metal form deck plate. Cold-formed steel deck sections are used in many composite floor slab applications wherein the steel deck serves not only as the form for the concrete during construction but also as the principal tensile reinforcement for the bottom fiber of the composite slab. A total of 16 specimens are tested to clarify the composite action between the concrete and metal deck plate and to find the method to increase the composite effect, whether or not non-slip bars are used. The test results are summarized for the shear-bond capacities, deformation capacities, and failure modes for the specimens.

  • PDF