DOI QR코드

DOI QR Code

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben (School of Civil Engineering, Qingdao University of Technology) ;
  • Wang, Zian (School of Civil Engineering, Qingdao University of Technology) ;
  • Qiao, Qiyun (College of Architecture and Civil Engineering, Beijing University of Technology) ;
  • Zhou, Wanqiu (School of Civil Engineering, Qingdao University of Technology)
  • Received : 2020.02.03
  • Accepted : 2022.06.06
  • Published : 2022.07.10

Abstract

The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

Keywords

References

  1. AIJ (2008), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Architecture Institute of Japan, Tokyo, Japan.
  2. AIJ (2010), AIJ Standards for Structural Calculation of Reinforced Concrete Structures, Architecture Institute of Japan, Tokyo, Japan.
  3. AIJ (2010), Design Recommendations for Composite Constructions, Architecture Institute of Japan, Tokyo, Japan.
  4. Al-Eliwi, B.J.M., Ekmekyapar, T., Al-Samaraie, M.I.A. and Dogru, M.H. (2018), "Behavior of reinforced lightweight aggregate concrete-filled circular steel tube columns under axial loading", Structure, 16(11), 101-111. https://doi.org/10.1016/j.istruc.2018.09.001.
  5. Ding, F.X., Luo, L., Wang, L., Cheng, S. and Yu, Z.W. (2018), "Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns", J. Constr. Steel Res., 144(5), 135-152. https://doi.org/10.1016/j.jcsr.2018.01.017.
  6. Du, G.F., Zhang, J., Li, Y., Zhang, J.C. and Zeng, L. (2019), "Experimental study on hysteretic model for L-shaped concretefilled steel tubular column subjected to cyclic loading", Thin-Wall. Struct, 144(11), 106278. https://doi.org/10.1016/j.tws.2019.106278.
  7. Du, Y.S., Chen, Z.H. and Yu, Y.J. (2016), "Behavior of rectangular concrete-filled high-strength steel tubular columns with different aspect ratio", Thin-Wall. Struct, 109(12), 304-318. https://doi.org/10.1016/j.tws.2016.10.005.
  8. Du, Y.S., Chen, Z.H., Richard Liew, J.Y. and Xiong, M.X. (2017), "Rectangular concrete-filled steel tubular beam-columns using high-strength steel: Experiments and design", J. Constr. Steel. Res., 131(4), 1-18. https://doi.org/10.1016/j.jcsr.2016.12.016.
  9. Fasaee, M.A.K., Banan, M.R. and Ghazizadeh, S. (2018), "Capacity of exposed column base connections subjected to uniaxial and biaxial bending moments", J. Constr. Steel Res., 148(9), 361-370. https://doi.org/10.1016/j.jcsr.2018.05.025.
  10. Gomez, I.R., Kanvinde, A. and Deierlein, G.G. (2010), "Exposed column base connections subjected to axial compression and flexure", Final rep AISC, Chicago.
  11. Grilli, D.A. and Kanvinde, A.M. (2017), "Embedded column base connections subjected to seismic loads: Strength model", J. Constr. Steel Res., 129(2), 240-249. https://doi.org/10.1016/j.jcsr.2016.11.014.
  12. Hassan, M.M., Mahmoud, A.A. and Serror, M.H. (2016), "Behavior of concrete-filled double skin steel tube beamcolumns", Steel Compos. Struct., Int. J., 22(5), 1141-1162. https://doi.org/10.12989/scs.2016.22.5.1141.
  13. JIS. A1108 (2006), Method of Test for Compressive Strength of Concrete, Japanese Industrial Standards Committee, Tokyo, Japan.
  14. JIS. G3136 (2005), Rolled Steels for Building Structure, Japanese Industrial Standards Committee, Tokyo, Japan.
  15. JIS. Z2241 (2011), Metallic Materials - Tensile testing - Method of Test at Room Temperature, Japanese Industrial Standards Committee, Tokyo, Japan.
  16. Kanvinde, A.M., Higgins, P., Cooke, R.J., Perez, J. and Higgins. J. (2015), "Column base connections for hollow steel sections: Seismic performance and strength models", J. Struct. Eng., 141(7). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001136.
  17. Kanvinde, A.M., Jordan, S.J. and Cooke, R.J. (2013), "Exposed column base plate connections in moment frames - Simulations and behavioral insights", J. Constr. Steel Res., 84(5), 82-93. https://doi.org/10.1016/j.jcsr.2013.02.015.
  18. Latour, M. and Rizzano, G. (2013), "A theoretical model for predicting the rotational capacity of steel base joints", J. Constr. Steel Res., 91(12), 89-99. https://doi.org/10.1016/j.jcsr.2013.08.009.
  19. Latour, M., Rizzano, G., Santiago, A. and Simoes da Silva, L. (2019), "Experimental response of a low-yielding, selfcentering, rocking column base joint with friction dampers", Soil Dyn. Earthq. Eng., 116(1), 580-592. https://doi.org/10.1016/j.soildyn.2018.10.011.
  20. Li, X., Zhou, T., Li, J., Kuang, X.B. and Zhao, Y.W. (2019), "Seismic behavior of encased CFT column base connections", Eng. Struct., 182(3), 363-378. https://doi.org/10.1016/j.engstruct.2018.12.076.
  21. Lim, W.Y., Lee, D. and You, Y.C. (2017), "Cyclic loading tests on exposed column-base plate weak-axis connections of small-size steel structures", Eng. Struct., 153(12), 653-664. https://doi.org/10.1016/j.engstruct.2017.10.066.
  22. Mou, B., Li, X., Qiao, Q.Y., He B.J. and Wu, M.L. (2019), "Seismic behavior of frame corner joints under bidirectional cyclic loading rest", Eng. Struct., 196(10), 109316 https://doi.org/10.1016/j.engstruct.2019.109316.
  23. Mou, B., Li, Y.Z. and Qiao, Q.Y. (2021c), "Connection behavior of CFST column-to-beam joint implanted by steel rebars under cyclic loading", Eng. Struct., 246(11), 113036. https://doi.org/10.1016/j.engstruct.2021.113036.
  24. Mou, B., Li, Y. Z., Wang, F.Y., Pan, W. and Zhao, Y. (2021a), "Flexural behavior of a novel high-strength RCFST column-tocolumn connection", Thin-Wall. Struct., 159(2), 107274. https://doi.org/10.1016/j.tws.2020.107274.
  25. Mou, B., Liu, X. and Sun, Z.G. (2021d), "Seismic behavior of a novel beam to reinforced concrete-filled steel tube column joint", J. Constr. Steel Res., 187(12), 106931. https://doi.org/10.1016/j.jcsr.2021.106931.
  26. Mou, B., Zhao, F., Wang, F.Y. and Pan, W. (2021e), "Effect of reinforced concrete slab on the flexural behavior of composite beam to column joints: Parameter study and evaluation formulae", J. Constr. Steel Res., 176(1), 106425. https://doi.org/10.1016/j.jcsr.2020.106425.
  27. Mou, B., Zhou, W.Q., Qiao, Q.Y., Feng, P. and Wu, C.L. (2021b), "Column base joint made with ultrahigh-strength steel bars and steel tubular: An experimental study", Eng. Struct., 228(02), 111483. https://doi.org/10.1016/j.engstruct.2020.111483.
  28. Nematzadeh, M., Fazli, S. and Hajirasouliha, I. (2017), "Experimental study and calculation of laterally-prestressed confined concrete columns", Steel Compos. Struct., 23(5), 517-527. https://doi.org/10.12989/scs.2017.23.5.517.
  29. Qiao, Q.Y., Zhang, W.W., Mou, B. and Cao, W.L. (2019), "Seismic behavior of exposed concrete filled steel tube column bases with embedded reinforcing bars: Experimental investigation", Thin-Wall. Struct, 136(3), 367-381. https://doi.org/10.1016/j.tws.2018.12.039.
  30. Qu, X.S., Chen, Z.H. and Sun, G.J. (2015), "Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods", Steel Compos. Struct., 18(1), 71-90. https://doi.org/10.12989/scs.2015.18.1.071.
  31. Rodas, P.T., Zareian, F. and Kanvinde, A. (2016), "Hysteretic Model for Exposed Column-Base Connections", J. Struct. Eng., 142(12). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001602
  32. Thomas, J. and Sandeep, T.N. (2018). "Experimental study on circular CFST short columns with intermittently welded stiffeners", Steel Compos. Struct, 29(5), 659-667. https://doi.org/10.12989/SCS.2018.29.5.659.
  33. Torres-Rodas, P., Zareian, F. and Kanvinde, A. (2018), "A hysteretic model for the rotational response of embedded column base connections", Soil Dyn. Earthq. Eng., 115(12), 55-65. https://doi.org/10.1016/j.soildyn.2018.08.015.
  34. Trautner, C.A., Hutchinson, T., Grosser, P.R. and Silva, J.F. (2016) "Effects of detailing on the cyclic behavior of steel baseplate connections designed to promote anchor yielding", J. Struct. Eng., 142(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001361.
  35. Wang, F., Young, B. and Gardner, L. (2019), "Experimental Study of Square and Rectangular CFDST Sections with Stainless Steel Outer Tubes under Axial Compression", J. Struct. Eng., 145(11). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002408
  36. Wang, X.T., Xie, C.D., Lin, L.H. and Li, J. (2019), "Seismic behavior of self-centering concrete-filled square steel tubular (CFST) Column Base", J. Constr. Steel Res., 156(5), 75-85. https://doi.org/10.1016/j.jcsr.2019.01.025.
  37. Wang, Y.Y, Geng, Y., Ranzi, G. and Zhang, S. (2011), "Timedependent behaviour of expansive concrete-filled steel tubular columns", J. Constr. Steel Res., 67(3), 471-483. https://doi.org/10.1016/j.jcsr.2010.09.007.
  38. Wang, Y.Y., Geng, Y., Zhao, M.Z. and Chen, J. (2019), "Nonlinear creep modelling on circular concrete-filled steel tubular columns", J. Constr. Steel Res., 159(8), 270-282. https://doi.org/10.1016/j.jcsr.2019.05.009.
  39. Wei, Y., Jiang, C. and Wu, Y.F. (2019), "Confinement effectiveness of circular concrete-filled steel tubular columns under axial compression", J. Constr. Steel Res., 158(7), 15-27. https://doi.org/10.1016/j.jcsr.2019.03.012.
  40. Xu, W., Han, L.H. and Li, W. (2016), "Seismic performance of concrete-encased column base for hexagonal concrete-filled steel tube: experimental study", J. Constr. Steel Res, 121(6), 352-369. https://doi.org/10.1016/j.jcsr.2016.02.003.
  41. Zhao, X.L., Grzebieta, R. and Elchalakani, Dr. M. (2002). "Tests of concrete-filled double skin CHS composite stub columns", Steel Compos. Struct. 2(2). https://doi.org/10.12989/scs.2002.2.2.129.