• Title/Summary/Keyword: deformation coordination

Search Result 19, Processing Time 0.024 seconds

Construction of the Personal 3D Characters for Virtual Clothing Coordination (가상 의복 코디네이션을 위한 개인 3D캐릭터의 구성)

  • 최창석;김효숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.9_10
    • /
    • pp.1015-1025
    • /
    • 2003
  • This paper proposes a method for constructing the virtual characters adopting the personal body types for the clothing coordination. At first, the method produces the 38 kinds of the Korean 3D body models considering sex, ages and body types, and constructs model DB. We select a model similar to the personal body size from DB and deform the selected model according to body size. The method deforms the model linearly for height 12 items, width 6 items, depth 5 items and round 13 items, and constructs the personal character fitted to the personal body size. The preprocess for model deformation consists of grouping for body part and establishing the feature points. Linear deformation for each group leads us to easy construction of the virtual personal characters. This method has two advantages as follows: 1. Large reduction of man power, cost and time for DB construction of the body 3D models, since the preprocess permits us to effectively use the various body models whose geometrical structures are different, 2 Suitability to Web-based clothing coordination, since the body deformation method is simple and its speed is very high.

Characterizing the strain transfer on the sensing cable-soil interface based on triaxial testing

  • Wu, Guan-Zhong;Zhang, Dan;Shan, Tai-Song;Shi, Bin;Fang, Yuan-Jiang;Ren, Kang
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.63-74
    • /
    • 2022
  • The deformation coordination between a rock/soil mass and an optical sensing cable is an important issue for accurate deformation monitoring. A stress-controlled triaxial apparatus was retrofitted by introducing an optical fiber into the soil specimen. High spatial resolution optical frequency domain reflectometry (OFDR) was used for monitoring the strain distribution along the axial direction of the specimen. The results were compared with those measured by a displacement meter. The strain measured by the optical sensing cable has a good linear relationship with the strain calculated by the displacement meter for different confining pressures, which indicates that distributed optical fiber sensing technology is feasible for soil deformation monitoring. The performance of deformation coordination between the sensing cable and the soil during unloading is higher than that during loading based on the strain transfer coefficients. Three hypothetical strain distributions of the triaxial specimen are proposed, based on which theoretical models of the strain transfer coefficients are established. It appears that the parabolic distribution of specimen strain should be more reasonable by comparison. Nevertheless, the strain transfer coefficients obtained by the theoretical models are higher than the measured coefficients. On this basis, a strain transfer model considering slippage at the interface of the sensing cable and the soil is discussed.

Shear behavior of the hollow-core partially-encased composite beams

  • Ye, Yanxia;Yao, Yifan;Zhang, Wei;Gao, Yue
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.883-898
    • /
    • 2022
  • A hollow-core partially-encased composite beam, named HPEC beam, is investigated in this paper. HPEC beam comprises I-beam, longitudinal reinforcement, stirrup, foam formwork, and cementitious grout. The foam formwork is located on both sides of the web, and cementitious grout is cast within the steel flange. To investigate the shear performance of HPEC beams, static loading tests of six HPEC beams and three control beams were conducted. The shear span ratio and the number of studs on the shear behavior of the HPECspecimens were studied. The failure mechanism was studied by analyzing the curves of shear force versus both deflection and strain. Based on the shear span ratio (𝜆), two typical shear failure modes were observed: shear compression failure when 1.6 ≤ 𝜆 ≤ 2; and diagonal compression failure when 𝜆 ≤ 1.15. Shear studs welded on the flange can significantly increase the shear capacity and integrity of HPEC beams. Flange welded shear studs are suggested. Based on the deformation coordination theory and superposition method, combined with the simplified modified compression field model and the Truss-arch model, Modified Deformation Coordination Truss-arch (M.D.C.T.) model was proposed. Compared with the shear capacity from YB9038-2006 and JGJ138-2016, the calculation results from M.D.C.T. model could provide reasonable predictions.

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

Study on System Compatibility Deformation Model of Rotary Tiller Under Lateral Loads

  • Hu, Hangxiang;Wang, Changbing;Sang, Zhengzhong
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.277-283
    • /
    • 1993
  • The model of rotary tillers under side loads established here is statically in determinate system. By means of FEM method, the deformation of side gearbox and right side board are calculated. Therefore the side deformations of rotary tillers under different lateral loads are discussed systematically. The results show that the rotary tiller system would bear the loads and deform unequally. Author's calculation also indicates that the lateral deforming values of right side board and side gearbox are almost the same, and more than 98% of the loads is born by the side.

  • PDF

Consumers Preference and Dissatisfaction on knitted Golf Wear (골프니트웨어의 소비자 선호도와 불만족에 관한 연구)

  • 신상무;이종림
    • Journal of the Korean Society of Costume
    • /
    • v.51 no.4
    • /
    • pp.97-112
    • /
    • 2001
  • The purposes of this study were to investigate consumers preference and dissatisfied factors in knitted golf wear The 430 questionnaires were sent to consumers who live in the Seoul Metropolitan district including Pundang-city and Iisan-city, The return rate was 89.5%. Statistical devices were t-test, ANOVA, $X$2. frequency with SAS program. The results of this study were as follows: First, Preferred colors were pastel, straw yellow, and black in descending order. Preferred coordination was analogous rather than complementary coordination. The classical look with T-neck, pullover, and V-neck was preferred. The preferred materials were pure cotton and cotton/wool blend in solid colors or plain and intasia structure. There were significant differences that pure cotton was preferred the forties and fifties or housewife, and cotton blend was preferred the thirties or service jobholders. Second, dissatisfied factors were pilling, deformation and de-coloration. The pilling problem was indicated in all income levels. Customers complained about no exchange and no refund policy with sales persons'discourtesy and time delay for repairing.

  • PDF

Variation in IR and Raman Spectra of CD3CN upon Solvation of InCl3 in CD3CN: Distinctive Blue Shifts, Coordination Number, Donor-Acceptor Interaction, and Solvated Species

  • Cho, Jun-Sung;Cho, Han-Gook
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.803-809
    • /
    • 2009
  • Notable blue shifts of the ν2 $C{\equiv}N$ stretching, $_{v4}$ C-C stretching and $_{v8}$ CCN deformation bands of $CD_3CN$ are observed upon solvation of $InCl_3$, resulting from the donor-acceptor interaction. The Raman spectrum in the $_{v2}$ region shows further details; at least two new bands emerge on the blue side of the $_{v2}$ band of free $CD_3CN$, whose relative intensities vary with concentration, suggesting that there exist at least two different cationic species in the solution. The strong hydrogen bonds formed between the methyl group and ${InCl_4}^-$ result in a large band appearing on the red side of the ν1 $CD_3$ symmetric stretching band. The solvation number of $InCl_3$, determined from the Raman intensities of the $C{\equiv}N$ stretching bands for free and coordinated $CD_3CN$, increases from $\sim$1.5 to $\sim$1.8 with decreasing concentration.

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang;Jia-qi Chang;Xing-hang Shen;Xiao-fan Lu;Tian-cheng Liu
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.53-65
    • /
    • 2023
  • With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

Application of Lean Theory to BIM-Based Coordination - A Case Study on Process Re-Engineering of MEP Coordination - (린 기법의 BIM 기반 설계조율 프로세스 접목 - 설비전기 설계조율 프로세스 재설계 사례연구 -)

  • Jang, Se-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.67-79
    • /
    • 2018
  • This paper provides theoretical deformation of lean concept and its application for usage of building information modeling (BIM) process. Recently, much research is focused on application of lean concept for more efficient usage of BIM. The lean theory and its basic function and feature is based on manufacturing industry. The manufacturing process can be improved by process re-engineering steps of lean concept which consist of the steps of value, value stream, flow, pull, perfection. However manufacturing process and construction process has different characteristics. Due to the differences, five steps of the traditional lean's process re-engineering can't be directly applied to the BIM based engineering process. In order to solve this problem, we conduct analysis on the characteristics of the manufacturing process and BIM based engineering. We propose modified and expanded concept of lean for process re-engineering and the modified theory was applied to the mechanical, electrical and plumbing (MEP) coordination process. Through the proposed 8 steps of methodology, 2D based process was changed to integrated and using BIM based MEP coordination process. In addition, the results showed the potentiality of cost reduction and process improvement. The results of this study can be a foundation for the theoretical combination of lean and a variety part of construction engineering process.

An analytical solution to the vibration characteristics for continuous girder bridge-track coupling system and its application

  • Feng, Yulin;Jiang, Lizhong;Zhou, Wangbao;Zhang, Yuntai;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.601-612
    • /
    • 2021
  • To study the vibration characteristics of a high-speed railway continuous girder bridge-track coupling system (HSRCBT), a coupling vibration analysis model of an m-span continuous girder bridge-subgrade-track system with n-span approach bridge was established. The model was based on the energy and its variational method, where both the interlaminar slip and shear deformation effects were considered. In addition, the free vibration equations and natural boundary conditions of the HSRCBT were derived. Further, according to the coordination principle of deformation and mechanics, an analytical method for calculating the natural vibration frequencies of the HSRCBT was obtained. Three typical bridge-subgrade-track coupling systems of high-speed railway were taken and the results of finite element analysis were compared to those of the analytical method. The errors between the simulation results and calculated values of the analytical method were less than 3%, thus verifying the analytical method proposed in this paper. Finally, the analytical method was used to investigate the influence of the number of the approach bridge spans and the interlaminar stiffness on the natural vibration characteristics of the HSRCBT based on the degree of sensitivity. The results suggest the approach bridges have a critical number of spans and in general, the precision requirements of the analysis could be met by using 6-span approach bridges. The interlaminar vertical compressive stiffness has very little influence on the low-order natural vibration frequency of HSRCBT, but does have a significant influence on higher-order natural vibration frequency. As the interlaminar vertical compressive stiffness increases, the degree of sensitivity to interlaminar stiffness of each of the HSRCBT natural vibration characteristics decrease and gradually approach zero.