• 제목/요약/키워드: deformability

검색결과 265건 처리시간 0.022초

개별요소법을 이용한 삼차원 DFN 시스템의 강도 및 변형계수 추정 (Estimation of Strength and Deformation Modulus of the 3-D DFN System Using the Distinct Element Method)

  • 류성진;엄정기;박진용
    • 터널과지하공간
    • /
    • 제30권1호
    • /
    • pp.15-28
    • /
    • 2020
  • 본 연구는 개별요소법을 이용하여 삼차원 불연속절리망 시스템의 강도 및 변형계수를 추정하기 위해 제안된 기법을 소개하였다. DFN(discrete fracture network) 시스템에서 개별 절리는 유한 길이의 정사각 평면으로 취급하였다. 해석영역은 무결암과 유사한 거동을 하도록 설정된 가상절리와 실제 개별 절리의 조합으로 형성된 다면체로 이산화하였다. 제안된 기법의 적용성을 검토하기 위하여 확정적 및 추계론적 삼차원 DFN 시스템으로 이루어진 한 변이 10m인 정육면체 해석영역에 대하여 개별요소법에 의한 강도 및 변형계수를 추정하는 수치실험이 수행되었다. 또한, 본 연구는 절리의 기하학적 속성이 DFN 시스템의 강도 및 변형 특성에 미치는 영향을 살펴보았다. 제안된 기법은 삼차원 DFN 시스템의 이방적 강도 및 변형 특성을 효과적으로 추정하는 것으로 평가되었다.

평면이방성 암석의 변형특성 모델연구 (A Model Study on Deformability of A Transversely Isotropic Rock)

  • 박철환;박의섭;박찬
    • 터널과지하공간
    • /
    • 제18권4호
    • /
    • pp.252-262
    • /
    • 2008
  • 한 개의 평면이방성 시험편의 일축압축시험을 통하여 얻을 수 있는 변형률은 최대 4개이므로 5개의 독립적 탄성상수를 이론적으로 결정할 수 없다. 이런 문제를 해결하기 위하여 Saint Venant에 의하여 가정식이 제안되었는데 Lekhnitskii는 실험 경험을 통하여 이 식을 재확인하였다. 그러나 이 식은 열동력학적인 탄성상수를 얻기 어려우며, 실험에서 이의 적용에는 한계가 있음이 경험적으로 발견되었다. 이에 새로운 가정식을 제안하였으며, 설정된 평면이방성 암석의 모델에서 이러한 제안식들의 적합성을 검토하였다. 그 결과 Lekhnitskii의 제안식은 경사각이 큰 시험편에는 유효하지만 $25{\sim}30$도 이하에서는 참값과 큰 오차를 보이는 결과로 해석되어 적용의 한계성이 있음이 밝혀졌다. 3개의 제안식들은 유효성이 각각 다르게 나타나는데 적합성은 시험편의 경사각에 좌우되며 탄성상수의 크기에 거의 무관한 것으로 판명되었다. 시험편의 경사각에 따라 가정된 식을 선택해야하는 지침이 본 연구의 결과로 제공되었다.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • 제48권6호
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

A finite element model for long-term analysis of timber-concrete composite beams

  • Fragiacomo, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.173-189
    • /
    • 2005
  • The paper presents a finite element model for studying timber-concrete composite beams under long-term loading. Both deformability of connection system and rheological behaviour of concrete, timber and connection are fully considered. The creep of component materials and the influence of moisture content on the creep of timber and connection, the so-called "mechano-sorptive" effect, are evaluated by means of accurate linear models. The solution is obtained by applying an effective step-by-step procedure in time, which does not require storing the whole stress history in some points in order to account for the creep behaviour. Hence the proposed method is suitable for analyses of composite beams subjected to complex loading and thermo-hygrometric histories. The possibility to accurately predict the long-term response is then shown by comparing numerical and experimental results for different tests.

Behaviour factor and displacement estimation of low-ductility precast wall system under seismic actions

  • Tiong, Patrick L.Y.;Adnan, Azlan;Hamid, Nor H.A.
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.625-655
    • /
    • 2013
  • This paper investigated the seismic behaviour of an innovated non-ductile precast concrete wall structural system; namely HC Precast System (HCPS). The system comprises load-bearing precast wall panels merely connected only to column at both ends. Such study is needed because there is limited research information available in design codes for such structure particularly in regions having low to moderate seismicity threats. Experimentally calibrated numerical model of the wall system was used to carry out nonlinear pushover analyses with various types of lateral loading patterns. Effects of laterally applied single point load (SPL), uniformly distributed load (UDL), modal distributed load (MDL) and triangular distributed load (TDL) onto global behaviour of HCPS were identified. Discussion was focused on structural performance such as ductility, deformability, and effective stiffness of the wall system. Thus, a new method for engineers to estimate the nonlinear deformation of HCPS through linear analysis was proposed.

휨지배 철근콘크리트 부재의 에너지 소산능력 평가방법 (Simplified Method for Estimating Energy-Dissipation Capacity of Flexure-Dominant RC Members)

  • 엄태성;박홍근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.297-305
    • /
    • 2002
  • As advanced earthquake analysis/design methods such as the nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and capacity of energy dissipation. However, currently, estimation of energy dissipation depends on empirical equations that are not sufficiently accurate, or experiment and sophisticated numerical analysis which are difficult to use in practice. In the present study, nonlinear finite element analysis was performed to investigate the behavioral characteristics of flexure-dominant RC members under cyclic load. The effects of axial force, arrangement of reinforcing bars, and reinforcement ratio on the cyclic behavior were studied. Based on the investigation, a simplified method to estimate the capacity of energy dissipation was proposed, and it was verified by the comparison with the finite element analyses and experiments. The proposed method can estimate the energy dissipation of RC members more precisely than currently used empirical equations, and it is easily applicable in practice.

  • PDF

Confinement Effects of High-Strength Reinforced Concrete Tied Columns

  • Han, Byum-Seok;Shin, Sung-Woo
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.133-142
    • /
    • 2006
  • An experimental study was conducted to investigate the effectiveness of transverse steel in reinforced concrete tied columns subjected to monotonically increasing axial compression. Eighteen large-scale columns($260{\times}260{\times}1,200mm$) were tested. Effects of such main variables as concrete compressive strength, configurations of transverse steel, transverse reinforcement ratio, spacing of transverse steel, and spalling of concrete cover were investigated. High-strength concrete columns under concentric axial loads show extremely brittle behavior unless the columns are confined with transverse steel that can provide sufficiently high lateral confinement pressure. A consistent decrease in the deformability of the column test specimens was observed with increasing concrete strength. Test results of this study were compared with existing confinement models of modified Kent-Park, Sheikh-Uzumeri, Mander, and Saatcioglu-Razvi. The comparison indicates many existing models to predict the behavior of confined concrete overestimate or underestimate the ductility of confined concrete.

Transdermal Delivery of Ceramide Using Sodium Deoxycholate-based Deformable Liposomes

  • Kim, Dong-Chan;Noh, Sang-Myoung;Kim, Young-Bong;Baek, Kwang-Hyun;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권5호
    • /
    • pp.319-323
    • /
    • 2008
  • For transdermal delivery of ceramides, various liposomes formulations were studied and evaluated. Sodium deoxycholate (SDC), Tween 20 and Span 85 were used as edge activators. The skin permeation of ceramides was performed using a Franz cell apparatus with hairless mouse skin. Among edge activators, SDC showed the higher values of deformability index and skin permeation than did others. For optimization of formulations, we varied the ratios of lipids to edge activators and the compositions between phosphatidylcholine (PC) and ceramides. The optimal ratio of lipid to SDC was observed to be 6:1 (w:w) and that of PC and ceramide was 1:1. Our results suggest that the skin permeation of ceramides could be enhanced by optimized deformable formulations of liposomes containing SDC as a major edge activator.

Graphic 방법을 이용한 암반의 경계조건에 따른 절리면 전단거동 예측 (Prediction for Shear Behavior of the Rock Joints with Boundary Conditions using the Graphic Method)

  • 김용준;이정학;송범;염형진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.466-471
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures, such as the cut slopes and the tunnels, are largely controlled by the conditions of the rock joint as well as its boundary conditions. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus is developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. It is possible that the behavior under the constant normal stiffness condition can be predicted by the normalized graphic method with results obtained from the tests in the constant normal stress condition.

  • PDF

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • 제2권5호
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.