• Title/Summary/Keyword: deflections

Search Result 834, Processing Time 0.124 seconds

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙실링 자동화 로봇의 프로토타입 개발에 관한 연구)

  • Lee Jeong-Ho;Yu Hyun-Seok;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.162-171
    • /
    • 2004
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

A Quality Stability Estimation of Shock-absorber Tube for automatic drawer (자동서랍함용 완충기 튜브의 품질 안정성 예측)

  • Son, Jae-Hwan;Kim, Young-Suk;Han, Chang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2919-2924
    • /
    • 2011
  • The automatic drawer is used to absorb the movement shock and adjust its velocity when it opens and closes. The tube in shock-absorber is the cylindrical case which surrounds its parts and is made of acetal. The purpose of this study is to determine the quality stability of the tube in the shock-absorber in injection molding process. The tube which had been manufactured in the process with 4 cavity cooling unit was used. In this study, the analysis and test are carried out to determine its quality stability. Which are the quality analysis with numerical simulation and performance tests of the tube compared with one of foreign make. It is calculated that the injection press is 87.6 MPa and the deflections in X, Y, Z directions are ranged in 0.07~1.00 mm. When the researched tube is compared with the foreign made tube, the maximum bending compressive load is 231 kgf higher, average axial compressive load is 0.05 kgf higher, and the roughness(Ra) on the inner surface is $0.02\;{\mu}m$. lower. In the result, it is known that the quality of researched tube in injection mold process is stable and its performance is superior.

INFLUENCE OF CAVITY SIZE AND RESTORATION METHODS ON THE CUSP DEFLECTION IN COMPOSITE RESTORATION (복합레진 수복시 와동의 크기 및 수복 방법이 교두 굴곡에 미치는 영향)

  • Lee Mi-Ra;Lee In-Bog;Seok Chang-In;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.532-540
    • /
    • 2004
  • The aim of this study was to measure the cusp deflection during composite restoration for MOD cavity in premolar and to examine the influence of cavity dimension, C-factor and restoration method on the cusp deflection. Thirty extracted maxillary premolar were prepared to four different sizes of MOD cavity and divided into six groups. The width and depth of the cavity were as follows. Group 1; $1.5{\;}{\times}{\;}1{\;}mm$, Group 2; $1.5{\;}{\times}{\;}2{\;}mm$, Group 3; $3{\;}{\times}{\;}1{\;}mm$, and Group 4-6; $3{\;}{\times}{\;}2{\;}mm$ respectively. Group 1-4 were restored using bulk filling method with Z-250 composite. However, Group 5 was restored incrementally, and Group 6 was restored with an indirect resin inlay. The cusp deflection was recorded at the buccal and lingual cusp tips using LVDT probe for 10,000 seconds. The measured cusp deflections were compared between groups, and the relationship between the cube of the length of cavity wall/the cube of the thickness of cavity wall ($L^3/T^3$). C-factor and cusp deflection or % flexure ($100{\;}{\times}$ cuspal deflection / cavity width) was analyzed. The cusp deflection of Group 1-4 were $12.1{\;}\mu\textrm{m},{\;}17.2{\;}\mu\textrm{m},{\;}16.2{\;}\mu\textrm{m}{\;}and{\;}26.4{\;}\mu\textrm{m}$ respectively. The C-factor was related to the % flexure rather than the cusp deflection. There was a strong positive correlationship between the $L^3/T^3$ and the cusp deflection. The cusp deflection of Group 5 and 6 were $17.4{\;}\mu\textrm{m}{\;}and{\;}17.9{\;}\mu\textrm{m}$ respectively, which are much lower value than that of Group 4.

Behavior of RC Beam Strengthened with Advanced Lifting Hole Anchorage System (개선된 인양홀을 이용한 정착장치로 보강된 RC 보의 거동)

  • Oh, Min-Ho;Kim, Tae-Wan;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.91-99
    • /
    • 2010
  • In order to strengthen RC structures, various strengthening methods have been used. Particularly, external tendon strengthening method is very popular method to strengthen damaged structures in terms of efficiency, ease, economics. In this study, improved anchorage elements using the lifting hole were proposed to strengthen PSC or RC girder without any damage. Two types of anchorage elements were proposed and these elements were applied on six RC beams. Also, three types of existing anchorage elements were applied on three RC beams. Otherwise, any anchorage element was not applied on one RC beam to used as a control beam. To analyse behavior of these elements, static load tests were carried out. Test variables were anchorage shapes, prestressing level on the steel bar and tendon profiles. Deflections, strains and modes of failure were recorded to examine the strengthening effects of the beams. Ductility index and tendon stress were analyzed by comparing cracking load, yielding load and ultimate load. As a result, proposed anchorage elements using lifting hole were superior to existing anchorage elements in terms of strengthening effect and furthermore, they showed ductile behavior based on energy method.

Improved VFM Method for High Accuracy Flight Simulation (고정밀 비행 시뮬레이션을 위한 개선 VFM 기법 연구)

  • Lee, Chiho;Kim, Mukyeom;Lee, Jae-Lyun;Jeon, Kwon-Su;Tyan, Maxim;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.709-719
    • /
    • 2021
  • Recent progress in analysis and flight simulation methods enables wider use of a virtual certification and reduces number of certification flight tests. Aerodynamic database (AeroDB) is one of the most important components for the flight simulation. It is composed of aerodynamic coefficients at a range of flight conditions and control deflections. This paper proposes and efficient method for construction of AeroDB that combines Gaussian Process based Variable Fidelity Modeling with adaptive sampling algorithm. A case study of virtual certification of a F-16 fighter is presented. Four AeroDB were constructed using different number and distribution of high-fidelity data points. The constructed database is then used to simulate gliding, short pitch, and roll response. Compliance with certification regulations is then checked. The case study demonstrates that the proposed method can significantly reduce number of high-fidelity data points while maintaining high accuracy of the simulation.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Developments of Advanced Connection Type for Improvements of Mixed Structures(I) : 3D Nonlinear Analysis of the Various Connection Types for Deriving Advanced Connection Type (혼합구조의 성능 향상을 위한 개선된 접합방식의 개발 (I) : 개선된 접합방식을 도출하기 위한 3차원 비선형 해석)

  • Yun, Ik Jung;Huh, Taik Nyung;Kim, Moon Kyum;Cho, Sung Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.89-94
    • /
    • 2008
  • The problem of interaction between the structures interconnected at discrete points as like composite structures, has a attracted considerable attention for a prolonged period of time. Recently, mixed structures are applied for overcoming structural limits by developed countries. In this paper, advanced connection type of mixed structures are presented by numerical approach. Also it is performed on extensive literature review from theoretical method to numerical analysis. For analysing behaviors of mixed structures according to connection type, 2 different connections and 1 reinforced connection are compared by 3D nonlinear numerical analysis. Nonlinear analysis of mixed structures is carried out by utilizing contact elements of a general purpose structural analysis computer program(ABAQUS). By using 6 criteria, each connections are investigated. From this result, proper reinforcing and well designed connection type are proposed. And results also show that the deflections which are induced by discontinuity on mixed structures, has a linear distribution that should decrease as applying proposed connection type.

Development of a Model for Predicting Modulus on Asphalt Pavements Using FWD Deflection Basins (FWD 처짐곡선을 이용한 아스팔트 포장구조체의 탄성계수 추정 모형 개발)

  • Park, Seong Wan;Hwang, Jung Joon;Hwang, Kyu Young;Park, Hee Mun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.797-804
    • /
    • 2006
  • A development of regression model for asphalt concrete pavements using Falling Weight Deflectometer deflections is presented in this paper. A backcalculation program based on layered elastic theory was used to generate the synthetic modulus database, which was used to generate 95% confidence intervals of modulus in each layer. Using deflection basins of FWD data used in developing this procedure were collected from Pavement Management System in flexible pavements. Assumptions of back-calculation are that one is 3 layered flexible pavement structure and another is depth to bedrock is finite. It is found that difference of between 95% confidence intervals and modulus ranges of other papers does not exist. So, the data of 95% confidence intervals in each layer was used to develop multiple regression models. Multiple regression equations of each layer were established by SPSS, package of Statics analysis. These models were proved by regression diagnostics, which include case analysis, multi-collinearity analysis, influence diagnostics and analysis of variance. And these models have higher degree of coefficient of determination than 0.75. So this models were applied to predict modulus of domestic asphalt concrete pavement at FWD field test.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

A Study on the Static Behaviors of Steel Deck Plates of Skew Bridges (사교(斜橋)의 강상판(鋼床板)의 정적거동(靜的擧動)에 대한 연구(研究))

  • Yang, Chang Hyun;Oh, Gi Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.815-826
    • /
    • 1994
  • Skew bridges are found frequently in new bridge construction due to geographical conditions when new constructing bridges are put across the existing highways, railroads or rivers. This study is to investigate the static behaviors of the steel deck plates of skew bridges which are increasingly used in bridges due to outstanding quality of structural steels, development of welding techniques, in order to reduce dead loads and period of constructions. The static behaviours of steel deck plates are analyzed using general purpose FE code SAP90 by modeling the skewed deck plates with rigorous finite elements, as the skew angles vary. The results of finite element analysis for the behaviors of steel deck plates and concrete slabs in acute, obtuse corners and center of decks are compared and discussed as the skew angles vary from $90^{\circ}$ to $30^{\circ}$. Two types of decks are treated, as isotropic plates and orthotropic plates, respectively. From the results of finite element analysis, it is found that more moments, reactions, and deflections occur at the obtuse corners than at the center of skewed decks regardless of isotropy or orthotropy. Especially, in case of the skewed deck plates with skew angles less than 45 degrees, significantly large discrepancies for the values of those internal forces are shown between the skewed and right deck plates. This study estimates the characteristics of deck behaviors according to skew angles, and proposes limitations of skew angles and the ciritical regions of decks.

  • PDF