DOI QR코드

DOI QR Code

Improved VFM Method for High Accuracy Flight Simulation

고정밀 비행 시뮬레이션을 위한 개선 VFM 기법 연구

  • Lee, Chiho (Department of Aerospace Information Engineering, Konkuk University) ;
  • Kim, Mukyeom (Department of Aerospace Information Engineering, Konkuk University) ;
  • Lee, Jae-Lyun (Department of Aerospace Information Engineering, Konkuk University) ;
  • Jeon, Kwon-Su (Department of Aerospace Information Engineering, Konkuk University) ;
  • Tyan, Maxim (Department of Aerospace Information Engineering, Konkuk University) ;
  • Lee, Jae-Woo (Department of Aerospace Information Engineering, Konkuk University)
  • Received : 2021.02.17
  • Accepted : 2021.07.14
  • Published : 2021.09.01

Abstract

Recent progress in analysis and flight simulation methods enables wider use of a virtual certification and reduces number of certification flight tests. Aerodynamic database (AeroDB) is one of the most important components for the flight simulation. It is composed of aerodynamic coefficients at a range of flight conditions and control deflections. This paper proposes and efficient method for construction of AeroDB that combines Gaussian Process based Variable Fidelity Modeling with adaptive sampling algorithm. A case study of virtual certification of a F-16 fighter is presented. Four AeroDB were constructed using different number and distribution of high-fidelity data points. The constructed database is then used to simulate gliding, short pitch, and roll response. Compliance with certification regulations is then checked. The case study demonstrates that the proposed method can significantly reduce number of high-fidelity data points while maintaining high accuracy of the simulation.

최근 들어 비행 시뮬레이션 기술의 정확도 향상과 기술의 발전으로 실제 비행시험 횟수를 줄이고 시뮬레이션으로 비행 안전과 인증을 확인하는 가상 인증이 확대되는 추세에 있다. 고신뢰도의 비행 시뮬레이션을 위해서는 고정밀도의 공력 데이터를 다양한 받음각과 마하수, 옆 미끄럼각 범위에서 구성해야 한다. 본 연구에서는 정밀한 공력 데이터베이스의 구축을 위해 최적 설계에 주로 사용되는 다양한 데이터 융합 기법의 하나인 Gaussian Process(GP) 기반의 변형 정밀도 모델링(VFM, Variable Fidelity Modeling) 기법과 Adaptive Sampling 기법을 결합하여 개선 변형 정밀도(Improved VFM) 기법을 제안하였다. Case study로 F-16 전투기를 선정하고 고정밀도 데이터의 종류에 따라 4개의 Case를 분류하여 각각의 오차와 정확도를 확인하였다. 여기에 본 연구에서 제안하는 개선 VFM 데이터 융합 기법을 적용하여 고정밀 공력 데이터 사용 횟수를 최소화함으로써 그 유용함을 확인할 수 있었다. 또한, Gliding, Short Term Pitch Response, Roll Mode 기동에 대한 실제 실험 데이터 대비 항공안전 인증 요구 만족 여부를 확인하였다. 이를 통해 개선 변형 정밀도 모델링을 사용한 고정밀도 시뮬레이션의 가상 인증 적용 가능성을 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원(과제번호 20CTAP-C152021-02), 한국연구재단(No. 2020R1A6A1A03046811), 민군협력진흥원의 지원으로 민군협력기술사업(웨어러블 디스플레이 장치를 이용한 고신뢰성 무인비행체 시뮬레이터 기술 개발 과제)을 통해 수행된 과제임.

References

  1. Allerton, D., "The impact of flight simulation in aerospace," Aeronautical Journal, Vol. 114, December 2010, pp. 747~756. https://doi.org/10.1017/S0001924000004231
  2. Tyan, M., Kim, M. K., Pham, V., Choi, C. K., Nguyen, T. L. and Lee, J.-W., "Development of Advanced Aerodynamic Data Fusion Techniques for Flight Simulation Database Construction," AIAA 2018 Modeling and Simulation Technologies Conference, 2018-3581.
  3. Box, G. E. P. and Wilson, K. B., "On the Experimental Attainment of Optimum Conditions," Journal of the Royal Statistical Society Series B (Methodological), Vol. 13, No. 1, 1951, pp. 1~45. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x
  4. Smith, K., "On the Standard Deviations of Adjusted and Interpolated Values of an Observed Polynomial Function and Its Constants and the Guidance They Give Towards a Proper Choice of the Distribution of Observations," Biometrika, Vol. 12, No. 1/2, 1918 pp. 1~85. https://doi.org/10.1093/biomet/12.1-2.1
  5. Matheron, G., "Principles of geostatistics," Economic Geology, Vol. 58, No. 8, December 1963, pp. 1246~1266. https://doi.org/10.2113/gsecongeo.58.8.1246
  6. Tyan, M., Nguyen, N. V. and Lee, J.-W., "A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling," International Journal of Aeronautical and Space Sciences, Vol. 18, No. 4, 2017, pp. 662~674. https://doi.org/10.5139/IJASS.2017.18.4.662
  7. Nguyen, N. V. and Lee, J.-W., "Adaptive Multifidelity Constraints Method for Efficient Multidisciplinary Missile Design Framework," Journal of Spacecraft and Rockets, Vol. 53, No. 1, 2016, pp. 184~194. https://doi.org/10.2514/1.A33312
  8. Tyan, M., Nguyen, N. V. and Lee, J.-W., "Improving Variable-fidelity Modeling by Exploring Global Design Space and Radial Basis Function Networks for Aerofoil Design," Engineering Optimization, Vol. 47, No. 7, 2015, pp. 885~908. https://doi.org/10.1080/0305215X.2014.941290
  9. Nguyen, N. V., Tyan, M. and Lee, J.-W., "A Modified Variable Complexity Modeling for Efficient Multidisciplinary Aircraft Conceptual Design," Optimization and Engineering, Vol. 16, No. 2, 2015, pp. 485~505.
  10. Nguyen, N. V., et al., "Multidisciplinary Unmanned Combat Air Vehicle System Design Using Multi-fidelity Model," Aerospace Science and Technology, Vol. 26, No. 1, 2013, pp. 200~210. https://doi.org/10.1016/j.ast.2012.04.004
  11. Forrester, A. I. J. and Keane, A. J., "Recent advances in surrogate-based optimization," Progress in Aerospace Sciences, Vol. 45, No. 1-3, January 2009, pp. 50~79. https://doi.org/10.1016/j.paerosci.2008.11.001
  12. Etz, A., "Introduction to the Concept of Likelihood and Its Applications," Advances in Methods and Practices in Psychological Science, Vol. 1, No. 1, 2018, pp. 60~69. https://doi.org/10.1177/2515245917744314
  13. Haftka, R. T., "Combining Global and Local Approximations," AIAA Jornal, Vol. 29, No. 9, 1991, pp. 1523~1525. https://doi.org/10.2514/3.10768
  14. Picheny, V., Ginsbourger, D., Roustant, O., Haftka, R. T. and Kim, N.-H., "Adaptive Designs of Experiments for Accurate Approximation of a Target Region," Journal of Mechanical Design, Vol. 132, No. 7, June 2010.
  15. Tyan, M. and Lee, J.-W., "Efficient multiresponse adaptive sampling algorithm for construction of variable-fidelity aerodynamic tables," Chinese Journal of Aeronautics, Vol. 32, No. 3, January 2019, pp. 547~558. https://doi.org/10.1016/j.cja.2018.12.012
  16. Lee, D., Nguyen, N. V., Tyan, M., Chun, H.-G., Kim, S. and Lee, J.-W., "Enhanced multi-fidelity model for flight simulation using global exploration and the Kriging method," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 231, No. 4, 2017, pp. 606~620. https://doi.org/10.1177/0954410016641441
  17. Ronch, A. D., Ghoreyshi, M. and Badcock, K. J., "On the generation of flight dynamics aerodynamic tables by computational fluid dynamics," Progress in Aerospace Sciences, Vol. 47, No. 8, 2011, pp. 597~620. https://doi.org/10.1016/j.paerosci.2011.09.001
  18. Fox, M. C. and Forrest, D. K., "Supersonic Aerodynamic Characteristics of an Advanced F-16 Derivative Aircraft Configuration," NASA TP 3355, 1993.
  19. Lee, J.-W., Research on fighter-grade high-reliability virtual flight certification technology 2nd year-end report, 2018.
  20. Finck, R. D., USAF Stability and Control DATCOM, McDonnel Douglas Corporation, 1978.
  21. Supplemental Flight Manual, Lockheed Martin Corporation, T.0. GR1F-16CJ-1-1, 1997.
  22. Nguyen, L. T., Ogburn, M. E., Gilbert, W. P., Kibler, K. S., Brown, P. W. and Deal, P. L., "Simulator Study of Stall/PostStall Characteristics of a Fighter Airplane With Relaxed Longitudinal Static Stability," NASA TP 1538, 1979.
  23. Berndt, J. S., "JSBSim: An Open Source Flight Dynamics Model in C++," AIAA Modeling and Simulation Technologies Conference and Exhibit, AIAA 2004-4923, August 2004.