• Title/Summary/Keyword: deflection

Search Result 3,781, Processing Time 0.028 seconds

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

Numerical Model Study for Structure and Distribution of the Keum River Plume (금강 풀룸의 구조와 분포에 대한 수치모델 연구)

  • 신은주;이상호;최현용
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.157-170
    • /
    • 2002
  • To examine the structure and distribution of the Keum River plume produced by continuous river discharge we carried out three-dimensional numerical model experiments with or without Coriolis force and tide. When Coriolis force is included but tide is not the model plume forms the clockwise circulation north of southern channel in the developing stage. As the plume expansion progresses the center of circulation moves to the southwest, with fuming the discharging axis of low-salinity water to the southwest from the mouth of southern channel. These results are explained mainly in terms of barotropic geostrophy by surface slope maintained with accumulated low-salinity(buoyant) water in front of the estuary mouth due to of offshore strong salinity front. When the M$_2$ tide is included the model plume extends farther to the northwest, forming large tongue-like salinity distribution. The tidally averaged surface flows of the offshore plume are mainly in geostrophic balance. These changes in plume distribution are explained in terms of low-salinity water advection by tidal excursion and active tidal mixing; the former supplies low salinity water to the north off the estuary mouth and the later increases mean sea level along the plume and surface salinity in northern shallow coastal area. The main features of observed Keum River plume(Lee et al., 1999; Choi et al., 1999), which showed the northwestward deflection of the plume axis and northward deepening of the plume thickness from the estuary mouth region, are well reproduced by the model in which tide is included.

Nonlinear Moment-Curvature Relations and Numerical Structural Analysis of High-Strength PSC Flexural Members (고강도 PSC 휨부재의 비선형 모멘트-곡률 관계와 전산구조해석)

  • 연정흠;이제일
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • A methods to calculate non-linear moment-curvature relations of high-strength PSC flexural members for numerical analysis has been proposed. The moment-curvature relations were calculated with assumptions of design codes and by the layer method. The results of the proposed procedures for moment-curvature relations and numerical analysis were compared with those of pre-existing tests. The absorption energy rate of the design codes was about 30% larger than that of the layer method. The ultimate load and the external work of the layer method were 90% and 85% of those of tests, respectively The ultimate load of the strength design method was 97% of that of tests, but the external work was over-estimated with 122%. The ultimate load and external work by the proposed equation of the CEB-FIP Model Code were 113% and 173% of those of tests, respectively. It show that the use of ultimate strain of 0.0035 should be over-estimated for high-strength concrete. The procedure of non-linear numerical analysis of this research could be stably simulated the behavior of concrete flexural members until the ultimate state, and calculate results of the load-deflection relation and cracking pattern were very similar with those of tests.

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

Paleomagnetic Study on Cretaceous Rocks in Haenam Area (해남지역의 백악기 암석에 대한 고지자기 연구)

  • 임무택;이윤수;강희철;김주용;박인화
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.119-131
    • /
    • 2001
  • A mean characteristic remanent magnetization was obtained for the first time in Korea from volcanic and pyroclastic sedimentary rocks distributed in Haenam Area, located in southwestern part of the Korean Peninsula. The age of the prevailing rocks in this area belongs mostly to Late Cretaceous, with a few exceptions of Early Cretaceous, mainly based on K/Ar whole rock age dating. Characteristic remanent magnetizations of these have both normal and reverse polarities with antipodal direction, which were interpreted to be the primary remanent magnetizations obtained by the ambient Earth's magnetic field at the time of formation of the concerned rocks. The source magnetic minerals of the remanent magnetization has been identified as magnetite. The mean direction of characteristic remanent magnetization obtained from the Late Cretaceous rocks in this study is Dm/Im=21.4 supper(o)/57.1 supper(o) (${\alpha}_{95}=13.4^{\circ}$, k=350.0). The paleomagnetic pole position calculated from this result for the Late Cretaceous, is $72.5^{\circ}N/199.9^{\circ}E$ (dp/dm= $14.2^{\circ}/19.5^{\circ}E$), which matches well with those of 80 Ma ($76.2^{\circ}N/198.9^{\circ}E$) and 90 Ma ($76.2^{\circ}N/200.1^{\circ}E$) of the Eurasian Continent's APWP (Apparent Polar Wander Path). This result strongly indicates that the studied area, belonging to the Eurasian Continent, have suffered very little geotectonic movement after the Late Cretaceous. The deflection of declination of remanence from Early Cretaceous rocks in the study area may indicate that the micro-block was counterclockwisely rotated with vertical axis between the late of Early Cretaceous and the early of Late Cretaceous.

  • PDF

Reinforcement Method of a Long Span Plastic Greenhouse using Tension-tie (인장타이를 이용한 광폭형 비닐하우스의 보강법)

  • Shin, Kyung-Jae;Shin, Dong-Hui;Lee, Swoo-Heon;Chae, Seoung-Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • A long-span (more than 8m) plastic greenhouse is currently being used in farms due to its magnified benefits, such as the convenience of the farming equipment used, and the land usage efficiency. In this study, the reinforcing effects of the use of a pretension tie were shown. In a previous study, tests for a 6.5m single-span-type greenhouse announced by Rural Development Administration were carried out. The tests of symmetric and eccentrics now loading by the sun and wind were conducted for the 10.2m span with a ${\phi}48.1{\times}2.1$ section in this study, after which the load-deflection relationship was compared for the cases of reinforcement with a tie and without a tie. The results of the symmetric snow loading test showed that the strength increased by 68~93% in the case of the specimen with a tied arch. The failure mode of the specimen without a tie tended to be that with a sway failure mechanism, and that of the reinforcement specimens with a tie tended to be that with an arch buckling mechanism. The results of the eccentric snow loading test showed that the strength of the specimen with a tie increased by 10~20% compared to that of the specimen without a tie. For the failure mode of the latter, a combined failure mechanism was adapted, although the failure mode of the tied specimens tended to be that with an arch buckling mechanism.

A Numerical and Experimental Study on Structural Performance of Noncomposite and Composite Eco-Arch Structures subjected to Concentrated Loads (집중하중을 받는 비합성.합성 생태아치구조물의 성능평가를 위한 수치해석 및 모형실험 연구)

  • Kim, Yong-Hee;Park, Jong-Sup;Lee, Young-Ho;Oh, Min-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2010
  • In this study, noncomposite and composite eco-arch structures with I-beams and precast concrete(PC) decks were investigated. Four finite-element models(a steel-girder model, a steel-girder-and-several-PC-panels model, a three-steel-girder model, and a three-steel-girder-and-several-PC-panels model) using a general finite-element program, ABAQUS, were reviewed to predict the strength of the noncomposite and composite arch structures. Based on the results of the finite- element analysis, the behaviors of the four models were investigated, and deflection and strain gauges for the experimental specimen consisting of three steel girders and several PC panels were set up to obtain the ultimate strength. The ultimate strength of the specimen was estimated to be 1,961kN. The ultimate strength was much larger than the 1,380-kN load calculated using AASHTO LRFD Bridge Design Specifications(2007). The noncomposite and composite arch bridges were found to have enough strength for safety.

Experimental Verification of Flexural Response for Strengthened R/C Beams by Stirrup Partial-Cutting Near Surface Mounted Using CFRP Plate (CFRP 플레이트 적용 스터럽 부분절단형 표면매립공법으로 보강된 철근콘크리트 보의 휨 거동에 대한 실험적 평가)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Gi-Hong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.671-679
    • /
    • 2008
  • The near surface mounted (NSM) FRP strengthening method has been conventionally applied for strengthening the deteriorated concrete structures. The NSM strengthening method, however, has been issued with the problem of limitation of the cutting depth which is usually considered as concrete cover depth. This may be related with degradation of bonding performance in long-term service state. To improve the debonding problem, in this study, the Stirrup partial-cutting NSM (SCNSM) strengthening method using CFRP plate was newly developed. SCNSM strengthening method can be effectively applied to the deteriorated concrete structure without any troubles of insufficient cutting depth. To experimentally verify the structural behavior, the flexural test of the concrete beam by using the SCNSM strengthening method was conducted with the test variable as the strengthening length (32%, 48%, 70%, 80%, 96% of span length). In the result of the test, the NSM and SCNSM strengthened specimen showed similar structural behavior with load-deflection, mode of failure. Additionally, there was no apparent structural degradation by the stirrup partial-cutting. Consequently, it was evaluated that the SCNSM strengthening method can be useful for seriously damaged concrete structures that is hard to apply the conventional NSM strengthening method for increasing the structural capacity.

Evaluation of Behavior of Direct Fixation Track and Track Girder Ends on Yeongjong Grand Bridge (영종대교 강직결 궤도 및 종형거더 단부의 거동 분석)

  • Choi, Jung-Youl;Chung, Jee-Seung;Kim, Jun-Hyung;Lee, Kyu-Yong;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.45-51
    • /
    • 2016
  • The purpose of this study is to investigate the influence of train-induced end rotation of simple supported track girder on the performance of a direct fixation track system (DFTS) in Yeongjong grand bridge. In this study, the influences of deflection of a DFTS and track girder on dynamic rail-track girder interaction forces for the track girder ends currently employed in airport express lines were assessed by performing field tests using actual vehicles running along the service lines. Therefore, the dynamic displacement of rail and track girder and the fastener stress on the center and ends sections of DFTS were measured for two different trains (AREX and KTX) running in Yeongjong grand bridge. A three-dimensional finite element analysis (FEA) model using the time-history function based on the design wheel load was used to predict the train-induced track and track girder displacement, and the FEA and field test results were compared. The analytical results reproduced the experimental results well within about 3-7% difference in the values. Therefore, the FEA model of DFTS on track girder is considered to provide sufficiently reliable FEA results in the investigation of the behavior of DFTS. Using the analytical and experimental results, the influence of train-induced end rotation of simple supported track girder on the interaction behavior of rail and track girder installed on a simple supported track girder ends, i.e., upward displacement of rail-track girder and the fastener stress, was investigated. It was found that the train-induced end rotation effect of track girder was not significantly affected by the upward displacement of rails and the fastener stresses of track girder ends. Further, the interaction behavior of rail and track girder were similar to or less than that of the general railway bridge deck ends, nevertheless the vertical displacement of track was higher than that of conventional DFTS on the general railway bridge. From the results, the dynamic responses of the DFTS on track girder ends were not significantly affected by the safety and stability of DFTS ends.