DOI QR코드

DOI QR Code

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite

일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석

  • Shin, Jung Hun (Computational Science & Engineering Center, Korea Institute of Science and Technology Information) ;
  • Sa, Jeong Hwan (Computational Science & Engineering Center, Korea Institute of Science and Technology Information) ;
  • Kim, Han Gi (Computational Science & Engineering Center, Korea Institute of Science and Technology Information) ;
  • Cho, Keum Won (Computational Science & Engineering Center, Korea Institute of Science and Technology Information)
  • 신정훈 (한국과학기술정보연구원 계산과학공학센터) ;
  • 사정환 (한국과학기술정보연구원 계산과학공학센터) ;
  • 김한기 (한국과학기술정보연구원 계산과학공학센터) ;
  • 조금원 (한국과학기술정보연구원 계산과학공학센터)
  • Received : 2016.08.02
  • Accepted : 2017.02.23
  • Published : 2017.05.01

Abstract

As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

컴퓨팅 아키텍처와 응용 소프트웨어 기술의 발달로 최근에는 근사가 아닌 실제 물리계 모사라는 컴퓨터 시뮬레이션의 궁극 목표가 현실 이슈로 대두되고 있다. 본 논문에서는 미국 정부 주도 슈퍼컴퓨팅 기반 다물리 시뮬레이션 사업의 결과물로 나온 일리노이 대학의 일리노이 록스타라는 유체-구조-연소 연성 해석툴을 활용하여 충격파관 내의 금속판의 미소 시간 운동을 전산모사하고 기존 실험, 해석들과 비교하는 연구를 수행하였다. 전산유동해석은 정렬격자를 기반으로 하였고 구조해석은 대변형 선형탄성을 가정하였다. 또한 강한 연계 시간적분법이 적용된 알고리즘의 고도화로 인해 충격파 내 금속패널에 관한 높은 수준의 실험-계산 상관성을 보였다. 본 연구의 제한적인 검증연구를 확장하여 해석환경 내 추가 모듈들의 검증작업들과 코드개선을 통해 오픈소스 기반 연구개발 도구로서 활용할 예정이다.

Keywords

References

  1. Keyes, D. E. et al, 2013, "Special Issue on Multiphysics Simulations: Challenge and Opportunities," International Journal of High Performance Computing Applications, Vol. 27, No. 1, pp. 1-83.
  2. Brandyberry, M. D. et al, 2012, "Special Issue on Multiphysics Simulations: Challenge and Opportunities," 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, AIAA2012-4216.
  3. Giordano, J., Jourdan, G., Burtschell, Y., Medale, M., Zeitoun, D. E. and Houas, L., 2005, "Shock Wave Impacts on Deforming Panel, an Application of Fluid-Structure Interaction," Shock Waves, Vol. 14, pp. 103-110. https://doi.org/10.1007/s00193-005-0246-9
  4. Deiterding, R., Cirak, F. and Mauch, S. P., 2008, "Efficient Fluid-Structure Interaction Simulation of Viscoplastic and Fracturing Thin Shells Subjected to Underwater Shock Loading," International Workshop on Fluid-Structure Interaction. Theory, Numerics and Applications, Herrsching am Ammersee 2008, pp. 65-80.
  5. Pasquariello, V., Hammerl, G., Orley, F., Hickel, S., Danowski, C., Popp, A., Wall, W. A. and Adams, N. A., 2016, "A Cut-Cell Finite Volume - Finite Element Coupling Approach for Fluid-Structure Interaction in Compressible Flow," Journal of Computational Physics, 307, pp. 670-690. https://doi.org/10.1016/j.jcp.2015.12.013
  6. Sanches, R. A. K. and Coda, H. B., 2014, "On Fluid-Shell Coupling Using an Arbitrary Lagrangian- Eulerian Fluid Solver Coupled to a Positional Lagrangian Shell Solver," Applied Mathematical Modelling, Vol. 38, No. 14, pp. 3401-3418. https://doi.org/10.1016/j.apm.2013.11.025
  7. Blazek, J., 2015, Computational Fluid Dynamics: Principles and Applications, Elsevier Science Ltd., Oxford, pp. 72-120.
  8. Farhat, C. and Lesoinne, M., 2000, "Two Efficient Staggered Algorithms for the Serial and Parallel Solution of Three-dimensional Nonlinear Transient Aeroelastic Problems," Computer Methods in Applied Mechanics and Engineering, Vol. 182, No. 3-4, pp. 499-515. https://doi.org/10.1016/S0045-7825(99)00206-6
  9. Smith, R. E., Transfinite Interpolation (TFI) Generation Systems. In Joe F. Thompson, Bharat K. Soni, and Nigel P. Weatherill, Editors, Handbook of Grid Generation, chapter 3, pages 3-1-3-15. CRC, 1998.
  10. Kanchi, H. and Masud, A., 2007, "A 3D Adaptive Mesh Moving Scheme," International Journal of Numerical Methods in Fluids, 54, pp. 923-944. https://doi.org/10.1002/fld.1512
  11. Brewer, M., Diachin, L., Knupp, P., Leurent, T. and Melander, D., 2003, "The Mesquite Mesh Quality Improvement Toolkit," Proceedings, 12th International Meshing Roundtable, Sandia National Laboratories report SAND 2003-3030P, Sept. 2003, pp. 1-27.
  12. Jiao, X., Zheng, G., Alexander, P. A. and Campbell, M. T., 2006, "A System Integration Framework for Coupled Multiphysics Simulations," Engineering with Computers, Vol. 22, No. 3, pp. 293-309. https://doi.org/10.1007/s00366-006-0034-x