이 연구에서는 가설 연역적 탐구 실험이 학생들의 과학의 본성에 대한 관점 변화에 미치는 효과를 조사하였으며, 그 효과는 학습 전략에 따라 분석되었다. 연구 대상은 중학교 2학년 학생 212명이며 학생들은 실험집단과 통제집단으로 무선 배치되었다. 통제집단의 학생들은 안내된 탐구 실힘을 실시하였으며, 실험집단의 학생들은 가설 연역적 탐구 실험을 실시하였다. 연구 결과 사전 검사에서 실험 집단과 통제 집단은 과학의 본성에 대한 관점이 거의 비슷하게 나타났다. 수업을 실시한 후 실험 집단은 과학의 본성 중에서 관찰의 이론 의존성, 과학적 추론, 가설에 대한 관점이 유의미하게 변화되었다. 실험집단 중에서 피상적 전략을 주로 사용하는 학생들은 과학의 본성 중에서 가설에 대한 관점만이 유의미하게 변화되었다. 반면, 실험집단 중에서 심층적 전략을 주로 사용하는 학생들은 과학의 본성 중에서 관찰의 이론의존성, 과학적 추론, 가설에 대한 관점이 유의미하게 변화되었다.
실생활에는 많은 카메라가 활용되고 있으며 단순한 추억을 위한 사진 촬영을 넘어서 문제 상황을 확인하기 위하여 감시, 방범을 위하여 많이 사용되고 있다. 이러한 감시와 방범은 일반적인 형태로 단순한 저장으로만 사용되고 있으며, 다수의 카메라를 활용하는 시스템에서는 추가 기능을 활용하는 것은 하드웨어의 추가적인 사양을 요구하게 된다. 본 논문에서는 일반적인 이미지 처리에서 벗어난 객체 감지 시스템을 수행하는 하나의 하드웨어 또는 서버에서 입력된 여러 개의 이미지 입력 처리하기 위해 이미지 입력 방법과 객체 감지 이후 처리 프로세스를 추가한다. 방법의 수행은 딥러닝을 수행하는 하드웨어의 학습과 추론에 모두 활용해 보며 개선된 이미지 처리 프로세스를 수행할 수 있도록 한다.
최근 오픈 도메인 자연어 질문 응답 분야에서는 다중 작업, 다중 홉 질문 응답에 관한 연구들이 활발히 진행되어 오고 있다. 본 논문에서는 이러한 다중 작업, 다중 홉 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 여러 문단들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 답변 유형, 뒷받침 문장들과 답변 영역 등을 동시에 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 높은 성능과 긍정적 효과를 입증한다.
스파이킹 신경망은 실제 두뇌 뉴런의 작동원리를 적용한 신경망으로, 뉴런의 생물학적 메커니즘으로 인해 기존 신경망보다 학습과 추론에 소모되는 전력이 적다. 최근 딥러닝 모델이 거대해지며 운용에 소모되는 비용 또한 기하급수적으로 증가함에 따라 스파이킹 신경망은 합성곱, 순환 신경망을 잇는 3세대 신경망으로 주목받으며 관련 연구가 활발히 진행되고 있다. 그러나 스파이킹 신경망 모델을 산업에 적용하기 위해서는 아직 선행되어야 할 연구가 많이 남아있고, 새로운 모델을 적용하기 위한 모델 재학습 문제 역시 해결해야 한다. 본 논문에서는 기존의 학습된 딥러닝 모델의 가중치를 추출하여 스파이킹 신경망 모델의 가중치로 변환하는 것으로 모델 재학습 비용을 최소화하는 방법을 제안한다. 또한, 변환된 가중치를 사용한 추론 결과와 기존 모델의 결과를 비교해 가중치 변환이 올바르게 작동함을 보인다.
딥러닝을 이용한 객체 검출의 경우 정확도와 실시간성을 모두 요구한다. 그러나, 한정된 자원 환경에서는 수 많은 양의 데이터를 처리하는 딥러닝 모델을 사용하기 어렵다. 이러한 문제 해결을 위해 본 논문에서는 소형임베디드 장치를 위한 객체 검출을 모델을 제안하였다. 일반적인 검출 모델과 달리 사전 학습된 특징 추출기를 제거한 구조를 사용하여 모델 크기를 최소화하였다. 모델의 구조는 경량화된 컨볼루션 블록을 반복해서 쌓는 구조로 설계하였다. 또한, 검출 오버헤드를 줄이기 위해 영역 제안 횟수를 크게 줄였다. 제안하는 모델은 공개 데이터 셋인 PASCAL VOC를 사용하여 학습 및 평가하였다. 모델의 정량적 평가를 위해 검출 분야에서 사용하는 average precision으로 검출 성능을 측정하였다. 그리고 실제 임베디드 장치와 유사한 라즈베리 파이에서 검출 속도를 측정하였다. 실험을 통해 기존 검출 방법 대비 향상된 정확도와 빠른 추론 속도를 달성하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권2호
/
pp.311-326
/
2024
The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.
Purpose : The aim of this article is to describe the nurses' experiential learning mechanism on patient safety. Methods : To analyze nurses' learning experiences on patient safety cases, a focus-group interview method was used. The Kolb's experiential learning model was used as a reference model. Findings : Without deep reflective reasoning about specific experiences, there is no creative or innovative solutions to experiment actively. Nurses are likely to be reluctant learners when there is no systemic support from formal departments which is in charge of patient safety and quality of care. Conclusion : In order to build patient safety culture in hospital, there should be efforts to make nurses as active learners on patient safety as well as to build learning environments in medical units.
Jeopardy 퀴즈쇼와 같은 DeepQA 환경에서 인간을 대신해 컴퓨터가 효과적으로 답하기 위해서는 인물, 지리, 사건, 역사 등을 포함하는 광범위한 지식베이스와 이를 토대로 한 빠른 시공간 추론 능력이 필요하다. 본 논문에서는 대표적인 병렬 분산 컴퓨팅 환경인 하둡/맵리듀스 프레임워크를 이용하여 방향 및 위상 관계를 추론하는 효율적인 대용량의 공간 추론 알고리즘을 제시한다. 본 알고리즘에서는 하둡/맵리듀스 프레임워크의 특성을 고려하여 병렬 분산처리의 효과를 높이기 위해, 지식 분할 문제를 맵 단계에서 해결하고, 이것을 토대로 리듀스 단계에서 효과적으로 새로운 공간 지식을 유도하도록 설계하였다. 또한, 본 알고리즘은 초기 공간 지식베이스로부터 새로운 지식을 유도할 수 있는 기능뿐만 아니라 초기 공간 지식베이스의 불일치성도 미연에 감지함으로써 불필요한 지식 유도 작업을 계속하지 않도록 설계하였다. 본 연구에서는 하둡/맵리듀스 프레임워크로 구현한 대용량 공간 추론기와 샘플공간 지식베이스를 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제시한 공간 추론 알고리즘과 공간 추론기의 높은 성능을 확인 할 수 있었다.
The design and philosophy are presented for an intelligent aid for a hyman operator who must diagnose a novel fault in a physical system. A novel fault is defined as one that the operator has not experienced in either real system operation or training. When the operator must diagnose a novel fault, deep reasoning about the behavior of the system components is required. To aid the human operator in this situation, four aiding approaches which provide useful information are proposed. The aiding information is generated by a qualitative, component-level model of the physical system. Both the aid and the human are able to reason causally about the system in a cooperative search for a diagnosis. The aiding features were designed to help the hyman's use of his/her mental model in predicting the normal system behavior, integrating the observations into the actual system behavior, or finding discrepancies between the two. The aid can also have direct access to the operator's hypotheses and run a hypothetical system model. The different aiding approaches will be evaluated by a series of experiments.
본 논문에서는 CNN 알고리즘을 사용한 수학 문제 답지 추론 모델에 대한 소개를 다룬다. 현재의 학습 보조 서비스 중에서도 질문에 답하는 서비스들이 흔하지만, 수학 문제에 특화된 이미지 기반 답지 추론 서비스는 부족한 상황이다. 본 논문에서는 MathDataset 클래스를 활용하여 수학 문제 이미지와 정답을 연결하는 데이터셋을 생성하고, CNN 알고리즘을 사용하여 모델을 훈련하는 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.