• 제목/요약/키워드: deep reasoning

검색결과 48건 처리시간 0.023초

가설 연역적 탐구 실험 수업이 학생들의 과학의 본성에 대한 관점에 미치는 영향 (The Influence of Hypothetical Deductive Experiment upon Students' Views on the Nature of Science)

  • 김지영;강순희
    • 한국과학교육학회지
    • /
    • 제27권3호
    • /
    • pp.169-179
    • /
    • 2007
  • 이 연구에서는 가설 연역적 탐구 실험이 학생들의 과학의 본성에 대한 관점 변화에 미치는 효과를 조사하였으며, 그 효과는 학습 전략에 따라 분석되었다. 연구 대상은 중학교 2학년 학생 212명이며 학생들은 실험집단과 통제집단으로 무선 배치되었다. 통제집단의 학생들은 안내된 탐구 실힘을 실시하였으며, 실험집단의 학생들은 가설 연역적 탐구 실험을 실시하였다. 연구 결과 사전 검사에서 실험 집단과 통제 집단은 과학의 본성에 대한 관점이 거의 비슷하게 나타났다. 수업을 실시한 후 실험 집단은 과학의 본성 중에서 관찰의 이론 의존성, 과학적 추론, 가설에 대한 관점이 유의미하게 변화되었다. 실험집단 중에서 피상적 전략을 주로 사용하는 학생들은 과학의 본성 중에서 가설에 대한 관점만이 유의미하게 변화되었다. 반면, 실험집단 중에서 심층적 전략을 주로 사용하는 학생들은 과학의 본성 중에서 관찰의 이론의존성, 과학적 추론, 가설에 대한 관점이 유의미하게 변화되었다.

딥러닝의 다수 입력 이미지 학습 및 추론 효율 향상을 위해 추가적인 처리 프로세스 연구 (A Study on Additional Processing Processes for Learning Multiple-input Images and Improving Inference Efficiency in Deep Learning)

  • 최동규;김민영;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.44-46
    • /
    • 2021
  • 실생활에는 많은 카메라가 활용되고 있으며 단순한 추억을 위한 사진 촬영을 넘어서 문제 상황을 확인하기 위하여 감시, 방범을 위하여 많이 사용되고 있다. 이러한 감시와 방범은 일반적인 형태로 단순한 저장으로만 사용되고 있으며, 다수의 카메라를 활용하는 시스템에서는 추가 기능을 활용하는 것은 하드웨어의 추가적인 사양을 요구하게 된다. 본 논문에서는 일반적인 이미지 처리에서 벗어난 객체 감지 시스템을 수행하는 하나의 하드웨어 또는 서버에서 입력된 여러 개의 이미지 입력 처리하기 위해 이미지 입력 방법과 객체 감지 이후 처리 프로세스를 추가한다. 방법의 수행은 딥러닝을 수행하는 하드웨어의 학습과 추론에 모두 활용해 보며 개선된 이미지 처리 프로세스를 수행할 수 있도록 한다.

  • PDF

다중 작업, 다중 홉 질문 응답을 위한 그래프 추론 및 맥락 융합 (Graph Reasoning and Context Fusion for Multi-Task, Multi-Hop Question Answering)

  • 이상의;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권8호
    • /
    • pp.319-330
    • /
    • 2021
  • 최근 오픈 도메인 자연어 질문 응답 분야에서는 다중 작업, 다중 홉 질문 응답에 관한 연구들이 활발히 진행되어 오고 있다. 본 논문에서는 이러한 다중 작업, 다중 홉 질문들에 효과적으로 응답하기 위해, 계층적 그래프 기반의 새로운 심층 신경망 모델을 제안한다. 제안 모델에서는 계층적 그래프와 그래프 신경망을 이용해 여러 문단들로부터 서로 다른 수준의 맥락 정보를 얻어낸 후, 이들을 활용하여 답변 유형, 뒷받침 문장들과 답변 영역 등을 동시에 예측해낸다. 본 논문에서는 오픈 도메인 자연어 질문 응답 데이터 집합인 HotpotQA를 이용한 실험들을 통해, 제안 모델의 높은 성능과 긍정적 효과를 입증한다.

스파이킹 신경망 추론을 위한 심층 신경망 가중치 변환 (Deep Neural Network Weight Transformation for Spiking Neural Network Inference)

  • 이정수;허준영
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.26-30
    • /
    • 2022
  • 스파이킹 신경망은 실제 두뇌 뉴런의 작동원리를 적용한 신경망으로, 뉴런의 생물학적 메커니즘으로 인해 기존 신경망보다 학습과 추론에 소모되는 전력이 적다. 최근 딥러닝 모델이 거대해지며 운용에 소모되는 비용 또한 기하급수적으로 증가함에 따라 스파이킹 신경망은 합성곱, 순환 신경망을 잇는 3세대 신경망으로 주목받으며 관련 연구가 활발히 진행되고 있다. 그러나 스파이킹 신경망 모델을 산업에 적용하기 위해서는 아직 선행되어야 할 연구가 많이 남아있고, 새로운 모델을 적용하기 위한 모델 재학습 문제 역시 해결해야 한다. 본 논문에서는 기존의 학습된 딥러닝 모델의 가중치를 추출하여 스파이킹 신경망 모델의 가중치로 변환하는 것으로 모델 재학습 비용을 최소화하는 방법을 제안한다. 또한, 변환된 가중치를 사용한 추론 결과와 기존 모델의 결과를 비교해 가중치 변환이 올바르게 작동함을 보인다.

소형 임베디드 장치를 위한 경량 컨볼루션 모듈 기반의 검출 모델 (Lightweight Convolution Module based Detection Model for Small Embedded Devices)

  • 박찬수;이상훈;한현호
    • 융합정보논문지
    • /
    • 제11권9호
    • /
    • pp.28-34
    • /
    • 2021
  • 딥러닝을 이용한 객체 검출의 경우 정확도와 실시간성을 모두 요구한다. 그러나, 한정된 자원 환경에서는 수 많은 양의 데이터를 처리하는 딥러닝 모델을 사용하기 어렵다. 이러한 문제 해결을 위해 본 논문에서는 소형임베디드 장치를 위한 객체 검출을 모델을 제안하였다. 일반적인 검출 모델과 달리 사전 학습된 특징 추출기를 제거한 구조를 사용하여 모델 크기를 최소화하였다. 모델의 구조는 경량화된 컨볼루션 블록을 반복해서 쌓는 구조로 설계하였다. 또한, 검출 오버헤드를 줄이기 위해 영역 제안 횟수를 크게 줄였다. 제안하는 모델은 공개 데이터 셋인 PASCAL VOC를 사용하여 학습 및 평가하였다. 모델의 정량적 평가를 위해 검출 분야에서 사용하는 average precision으로 검출 성능을 측정하였다. 그리고 실제 임베디드 장치와 유사한 라즈베리 파이에서 검출 속도를 측정하였다. 실험을 통해 기존 검출 방법 대비 향상된 정확도와 빠른 추론 속도를 달성하였다.

Visual Model of Pattern Design Based on Deep Convolutional Neural Network

  • Jingjing Ye;Jun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.311-326
    • /
    • 2024
  • The rapid development of neural network technology promotes the neural network model driven by big data to overcome the texture effect of complex objects. Due to the limitations in complex scenes, it is necessary to establish custom template matching and apply it to the research of many fields of computational vision technology. The dependence on high-quality small label sample database data is not very strong, and the machine learning system of deep feature connection to complete the task of texture effect inference and speculation is relatively poor. The style transfer algorithm based on neural network collects and preserves the data of patterns, extracts and modernizes their features. Through the algorithm model, it is easier to present the texture color of patterns and display them digitally. In this paper, according to the texture effect reasoning of custom template matching, the 3D visualization of the target is transformed into a 3D model. The high similarity between the scene to be inferred and the user-defined template is calculated by the user-defined template of the multi-dimensional external feature label. The convolutional neural network is adopted to optimize the external area of the object to improve the sampling quality and computational performance of the sample pyramid structure. The results indicate that the proposed algorithm can accurately capture the significant target, achieve more ablation noise, and improve the visualization results. The proposed deep convolutional neural network optimization algorithm has good rapidity, data accuracy and robustness. The proposed algorithm can adapt to the calculation of more task scenes, display the redundant vision-related information of image conversion, enhance the powerful computing power, and further improve the computational efficiency and accuracy of convolutional networks, which has a high research significance for the study of image information conversion.

환자안전에 관한 간호사의 경험학습: 낙상 사고를 중심으로 (Nurses' learning experiences from falling accidents on patient safety)

  • 윤선희;김광점
    • 한국병원경영학회지
    • /
    • 제20권2호
    • /
    • pp.1-14
    • /
    • 2015
  • Purpose : The aim of this article is to describe the nurses' experiential learning mechanism on patient safety. Methods : To analyze nurses' learning experiences on patient safety cases, a focus-group interview method was used. The Kolb's experiential learning model was used as a reference model. Findings : Without deep reflective reasoning about specific experiences, there is no creative or innovative solutions to experiment actively. Nurses are likely to be reluctant learners when there is no systemic support from formal departments which is in charge of patient safety and quality of care. Conclusion : In order to build patient safety culture in hospital, there should be efforts to make nurses as active learners on patient safety as well as to build learning environments in medical units.

맵리듀스 프레임워크를 이용한 대용량 공간 추론 방식 (Large-scale Spatial Reasoning using MapReduce Framework)

  • 남상하;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 춘계학술발표대회
    • /
    • pp.769-772
    • /
    • 2014
  • Jeopardy 퀴즈쇼와 같은 DeepQA 환경에서 인간을 대신해 컴퓨터가 효과적으로 답하기 위해서는 인물, 지리, 사건, 역사 등을 포함하는 광범위한 지식베이스와 이를 토대로 한 빠른 시공간 추론 능력이 필요하다. 본 논문에서는 대표적인 병렬 분산 컴퓨팅 환경인 하둡/맵리듀스 프레임워크를 이용하여 방향 및 위상 관계를 추론하는 효율적인 대용량의 공간 추론 알고리즘을 제시한다. 본 알고리즘에서는 하둡/맵리듀스 프레임워크의 특성을 고려하여 병렬 분산처리의 효과를 높이기 위해, 지식 분할 문제를 맵 단계에서 해결하고, 이것을 토대로 리듀스 단계에서 효과적으로 새로운 공간 지식을 유도하도록 설계하였다. 또한, 본 알고리즘은 초기 공간 지식베이스로부터 새로운 지식을 유도할 수 있는 기능뿐만 아니라 초기 공간 지식베이스의 불일치성도 미연에 감지함으로써 불필요한 지식 유도 작업을 계속하지 않도록 설계하였다. 본 연구에서는 하둡/맵리듀스 프레임워크로 구현한 대용량 공간 추론기와 샘플공간 지식베이스를 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제시한 공간 추론 알고리즘과 공간 추론기의 높은 성능을 확인 할 수 있었다.

Aiding the operator during novel fault diagnosis

  • Yoon, Wan-C.;Hammer, John-M.
    • 대한인간공학회지
    • /
    • 제6권1호
    • /
    • pp.9-24
    • /
    • 1987
  • The design and philosophy are presented for an intelligent aid for a hyman operator who must diagnose a novel fault in a physical system. A novel fault is defined as one that the operator has not experienced in either real system operation or training. When the operator must diagnose a novel fault, deep reasoning about the behavior of the system components is required. To aid the human operator in this situation, four aiding approaches which provide useful information are proposed. The aiding information is generated by a qualitative, component-level model of the physical system. Both the aid and the human are able to reason causally about the system in a cooperative search for a diagnosis. The aiding features were designed to help the hyman's use of his/her mental model in predicting the normal system behavior, integrating the observations into the actual system behavior, or finding discrepancies between the two. The aid can also have direct access to the operator's hypotheses and run a hypothetical system model. The different aiding approaches will be evaluated by a series of experiments.

  • PDF

CNN 알고리즘을 통한 수학 문제 답지 추론 (INFERENCE OF MATHEMATIC PROBLEM BY CNN ALGORITH)

  • 안채령;백재순;김성진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.185-186
    • /
    • 2024
  • 본 논문에서는 CNN 알고리즘을 사용한 수학 문제 답지 추론 모델에 대한 소개를 다룬다. 현재의 학습 보조 서비스 중에서도 질문에 답하는 서비스들이 흔하지만, 수학 문제에 특화된 이미지 기반 답지 추론 서비스는 부족한 상황이다. 본 논문에서는 MathDataset 클래스를 활용하여 수학 문제 이미지와 정답을 연결하는 데이터셋을 생성하고, CNN 알고리즘을 사용하여 모델을 훈련하는 방법을 제시한다.

  • PDF