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ABSTRACT

The design and philosophy are presented for an intelligent
aid for a human operator who must diagnose a novel fault in a
physical system. A novel fault is defined as one that the opera-
tor has not experienced in either real system operation or train-
ing. When the operator must diagnose a novel fault, deep reason-
ing about the behavior of the system components is required. To
aid the human operator in this situation, four aiding approaches
which provide useful information are proposed. The aiding infor-
mation is generated by a qualitative, component-level model of
the physical system. Both the aid and the human are able to rea-
son causally about the system in a cooperative search for a diag-
nosis. The aiding features were designed to help the human”s use
of his/her mental model in predicting the normal system behavior,
integrating the observations into the actual system behavior, or
finding discrepancies between the two. The aid can also have
direct access to the operator”s hypotheses and run a hypothetical
system model, The different aiding approaches will be evaluated
by a series of experiments.

INTRODUCTION

In highly automated systems, the human operator is primarily a monitor
and supervisor [Rasmussen 1983, 1984]. An important monitoring function is
diagnosing equipment faults, a difficult task in automated systems. The
current approach to fault diagnosis is to train the operator to deal with
relatively common faults. The training might teach the operator to use
symptoms to distinguish faults and to follow procedures to correct them.
While this approach should be successful with common faults, it does not
support diagnosis of novel faults.

Recently, there has been much interest in supporting the human operator
via expert systems for diagnosis. To be sure, this approach will improve
the system performance on relatively common failures. As for novel
failures, many expert systems for diagnosis [Shortliffe 1976, Miller, Pople,
and Myers 1984] are based on shallow reasoning: a set of symptoms suggests a
diagnosis. This mapping is not explicitly based on a system model. Conse-
quently, such systems are subject to the same limitations as training and
procedures. The designer may have to anticipate the failure for the expert
system to solve it correctly.
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In contrast to the above, our aid is based on deep, causal reasoning
about the system. There are several advantages to this approach. First,
novel fault diagnosis is normally considered to be knowledge-based reasoning
[Rasmussen 1983]. Hence, it seems appropriate for an intelligent aid to
reason causally. Second, this approach should be more reliable and robust.
The system knowledge is represented at the component level. Because com-
ponents are small and comprehendable, it should be possible to create
representations that are correct, perhaps even provably so. These points
support the belief that causal reasoning can cover a wider range of faults
[Davis 19841].

In spite of the power of the intelligent aid, we believe there are
several reasons to keep the human in command of the problem solving. First,
diagnosing a novel failure may require the human to extend the aid”s model.
Second, when diagnosis involves operating the system (e.g., opening valves,
starting motors), it would be better to leave these operations to the human.
Third, it may be that the human and the aid may be better able to find a
solution cooperatively than either can alone. This is possible, even neces-
sary, for two reasons. The human has better pattern recognition capabili~-
ties and can make inductive leaps. Second, the human may need to resolve
ambiguities inherent in the aid”s model.

imaliti in 1 Probl Solvi

The aid is designed to mitigate human suboptimalities that occur during
decision-making and troubleshooting [Wickens 1984]. Two categories of
suboptimalities used here are knowledge-limited and cognition-limited. The
knowledge-limited suboptimality is simply that the operator does not fully
understand the system. Obviously, the aid”s model is a basis for compensat-
ing for this problem. There are many cognition-limited suboptimalities. The
required information processing for a deep-reasoning diagnosis of a complex
system can overload the operator”s limited mental resources (i.e., attention
and working memory). To help, the computer aid can process and display use-
ful information for the operator. We expect that this may mitigate the
human biases in two ways. First, when the human relies on the aid for some
stages of his problem solving, the information received from the computer is
not biased. For example, if the human uses the aid to test a hypothesis,
the confirmation bias (i.e., the tendency to seek only confirming evidences)
will be prevented since the computer is not susceptible to this bias. Even
if the human does not rely on the aid, it may be able to display information
that is compatible with the human’s processing. Bias may be avoided if the
operator compares his results to the aid”“s. Second, the aid provides some
of the needed information processing, the human is to free to concentrate on
other areas. For example, if the workload of hypothesis evaluation is
lessened by the aid, the human may more freely entertain different
hypotheses rather than stick to one hypothesis (i.e., anchoring).

In the subsequent sections of this article, we will review some
relevant research on novel fault diagnosis, discuss the context of our
experimental task, and discuss the qualitative model in our aid and its
expected effects.
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REVIEW OF NOVEL FAULT DIAGNOSIS IN COMPLEX SYSTEMS

The literature on novel fault diagnosis in complex systems is limited.
The section will have three parts. The first is empirical research on the
effects of training on diagrosis. The second is Rasmussen’s system engineer-
ing approach to the information needs of operators. The third 1is Wohl“s
performance model for predicting diagnostic times for novel failures. The
last is the human information processing view of problem solving, which is
similar in some ways to novel fault diagnosis.

Shepherd et al. [1977] have studied the effects of training on the
errors operators committed while diagnosing familiar and unfamiliar
failures. There were three kinds of training. The first was '"no story,"
which amounted to a brief introduction to the control panel instruments.
The second was "theory," in which the operation and flow of materials was
explained. The third was "rules," which included the above theory training
plus a set of proceduralized rules for diagnosing failures. After this
training was administered, the three groups were tested. All three groups
were significantly different, with rules best and the no story group worst
on accuracy. The groups were then trained by examples to diagnose faults,
and a second test revealed no differences between the groups. Later, all
groups were tested again with two sets of faults -— familiar and unfamiliar.
Familiar faults were diagnosed equally well by all groups, but unfamiliar
faults were diagnosed best by the rules group.

An experiment on the effects of training on operator control of a simu-
lated process control plant has been conducted by Morris and Rouse [1985a].
One situation examined was the diagnosis of novel failures for which some of
the subjects had sufficient theoretical training to diagnose the failure.

The system controlled was a network of fluid tanks. Fluid was pumped
from these tanks through valves to neighboring tanks. Two novel failures
were studied: a tank rupture that caused a loss in fluid, and a safety sys-
tem failure that caused the system to shut down when it was not in danger.
The experimental results did not show any differences due to training.
Nearly all subjects were able to diagnose the tank rupture, and only half
were able to diagnose the safety system failure.

Rasmussen [1983] has discussed operator control of complex systems in
terms of three levels of information processing: skills, rules, and
knowledge. Skill-based performance applies primarily to automatic,
sensory-motor tasks that proceed without comscious control. One charac-
teristic of such performance is that it is not decomposable or verbally
expressible (for example, one cannot verbalize the skill of ridinmg a bicy-
cle).

The rule-based level is the second level of processing. A rule is a
direct mapping from a set of input symptoms to a diagnosis or action. While
performing at this level, the operator does not make recourse to causal
models. Rule-based reasoning can be verbalized, which distinguishes it from
the previous level.

The knowledge-based level is most relevant to the research reported
here. Knowledge-based reasoning must be applied when novel failures occur.
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Neither skill-based or rule-based behavior should be used, and hopefully,
the operator realizes this (but there is no guarantee). The operator”s con-
trol occurs by first forming a goal and then a plan consisting of actionms
that lead to the goal. The plan is evaluated and perhaps modified by a com-
bination of mental simulation or actual actions taken on the machine. Men-
tal simulation relies, among other things, on the operator”s mental model of
the system.

Rasmussen [1985] has discussed functional and causal reasoning in diag-
nosis and control of complex plants during novel failures. Physical systems
may be represented along a hierarchical, causal-functional continuum. The
causal end of this dimension is a description of components according to
their local behavior and their physical and structural location (much like a
qualitative model). The functional end of the dimension is a description of
aggregates according to their function or purpose. In highly automated sys-—
tems, the operator also needs to know the intent of the automation, since it
can change both the function and structure by its own action. The implica-
tions for novel fault diagnosis are the claims that an operator needs a mul-
tilevel display for intention, function, and causation. The motivation for
this is that diagnosis begins at a functional level and moves toward a
causal level as the diagnosis becomes more precise.

. lexi

Wohl [1982} has observed that electronic troubleshooting in complex
equipment operates in two modes. This first mode is for routine failures,
which account for 65-80% of all failures. These are repaired relatively
quickly. The second mode is for novel failures, which require substantially
more time to diagnose and lengthen substantially the mean time to repair. A
model for predicting the frequency distribution of novel malfunction repairs
has been developed and tested. The model has three parameters: an equip-—
ment complexity index, which is the average connectivity of a component;
second, an average time to test a component; and third, a parameter that
describes how diagnostic interpretation becomes geometrically more complex
with each diagnostic test. The test of the model showed a correlation of
r=.98 between measured and predicted mean time to repair for fourteen dif-
ferent electronic systems. In a related article, Wohl [1983] observed that
the model predicted an infinite mean time to repair when the equipment com-
plexity index exceeded 7.5. An infinite mean time to repair simply means
that some malfunctions are never diagnosed. An equipment complexity index
of 7.5 means that the average component is connected to 7.5 other com-
ponents. This limiting value is close to the chunk capacity of human work-
ing memory. This result is consistent with the often observed relationship
between connectivity and diagnosis complexity.
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Much of the research on problem solving would appear to be relevant to
novel fault diagnosis [Newell and Simon 1972]. We briefly review here the
human information processing approach to modeling of problem solving and
then discuss how novel fault diagnosis differs from it. The information
processing approach is centered arouund the idea of a problem space, which is
the human’s representation of the key characteristics of a problem. The
subject is given an initial and goal state in the problem space and a set of
operators that transform the problem from one state to another in the prob-
lem space. Usually, the states and operators are crisply defined. Often,
there is a metric for the difference between a given state and the goal
state. This metric can be used as a heuristic for selecting the operator
that moves the greatest distance toward the goal.

The behavior of a human is modeled by a production rule system. Each
production rule contains a condition and an action. The condition is a
boolean expression on the features of the problem space, some of which are
in the human’s working memory and some of which are externally perceivable.
The potential actions are working memory changes or operators as described
above.

Clearly, novel fault diagnosis is a special case of problem solving.
The specializations are as follows. First, the human operator must realize
the presence of a novel rather than routimne failure. Ideally, the displays
that result from a novel fault would be sufficiently different from the
displays of routine faults. If the novel fault had a display different from
routine faults, detection of a novel fault would seem to be assured. Unfor-
tunately, no existing system has been designed from this perspective.

Another specialization is that novel fault diagnosis will occur when
the operator has a problem space designed for routine operations and routine
failures. It is not known if an existing problem space representation will
interfere with novel fault diagnosis. It would seem difficult to believe
that some interference does not occur.

A final distinction between novel fault diagnosis and most problem
solving research has been how clearly the human can observe the system and
the consequences of changes to it. For example, in cryptarithmetic, the
human has complete information about the system, the legal operations, and
their immediate consequences. Typically, when an operator controls a com-
plex system, the system state is less clearly perceived, the available
operations are larger in number, and their effects less clearly perceivable.
The consequences of this imprecision are not well understood.

THE SYSTEM AND THE TASK

The Orbital Refueling System (ORS), a NASA-designed payload on the
Space Shuttle, was selected for study [NASA 1985]. The function of the ORS
is to refuel orbiting satellites with hydrazine, with the objective of
extending their useful service life. As shown in Figure 1, the ORS fluid
system contains a variety of components such as tanks, valves, pipes, etc.
The operator controls the simulated ORS by opening and closing valves.
Transferring fuel from propellant tank 1 to propellant tank 2 might proceed
as follows. First, tank 2 pressure is reduced by momentarily opening valves
10, 11, 13, and 17. Second, tank 1 is pressurized by opening valves 1, 3,



14

Figl-
¥-15 ¥-16 F-

¥-13 F-4
W00 KIT
-9
-1
CATALYTIC
vENT

Figure 1. The Orbital Refueling System,

and 7. Gaseous nitrogen will flow out of the two small supply tanks, be
pressure regulated, and fill tank 1 on one side of the bladder. To transfer
fuel to tank 2, valves 5, 14, 15, 16, and 9 would be opened. Because this
version of the ORS was for demonstration purposes, all transfers take place
between the two large tanks rather than to a satellite fuel tank. There are
several assemblies whose purpose was not explained in the above example.
The relief valves RVl and RV2 serve as a safety pressure relief. Check
valve CVl prevents backflow into the gas system. The bladders in tank 1 and
2 serve to isolate the fuel from the propellant and also to contain the fuel
in the weightlessness of space. Some components (e.g., valves 10 and 11)
may seem redundant; they are so by design for two failure tolerance.

Ihe Diagnosis Tasgk

The operator”s task is to diagnose the failure in the system. This
Tequires the operator to manipulate and observe the system, because a diag-
nosis cannot be determined uniquely from an observation of a state vector at
a single point in time. A solution is an assignment of states to components
such that the assignment”s behavior is always identical to system behavior.
For a single valve failure, the solution would be a normal state for all
components save the failed valve, which might be jammed shut. The diagnosis
problem can be viewed as a combinatorial search for a state assignment. The
search is constrained by the laws of component physics. That is, a state
assignment to a component imposes constraints on its neighboring components.
For example, if a valve is opened and permits a flow down a pipe, the
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component receiving the flow must be in a state to accept the flow.

QUALITATIVE MODELS OF CONTINUOUS PHYSICAL PROCESSES

This section describes qualitative models: representations, the compu~
tational problems solved, and the specific needs of our aid of the qualita-
tive model.

A qualitative model is & symbolic representation of a system. Its most
basic description is of a component. A component is described in terms of
its connections to other components and its behavior. Behavior is described
in terms of the physical variables which are present at its connections.
The differentiation between the structural description (connections) and the
behavioral description is particularly important for insuring the robustness
of a qualitative model. The isolation of each component in the behavioral
description has usually been emphasized by other qualitative modeling [De
Kleer and Brown 1983]. Contrarily, our qualitative model represents the
system at both the component level and at an aggregated level as paths. The
motivation for this is the belief that a multi-level description is closer
to the operator”s internal model of the process. In fact, more effective
communication between our model and the human operator was enabled by the
use of the higher level description.

From a given state, the behavior of a component is described in terms
of the physical variables present at its ports. A physical variable (and
its time derivative) may take several values. The time derivative usually
has only one of three possible values: negative, zero, or positive. The
variable itself may take either nominal or ordinal values. The nominal
values usually correspond to points at which behavior (component or
material) changes. For example, water temperature would have nominal values
at freezing and boiling. Variables may also take on ordinal values (or
relationships). For example, water temperature could be taken to be greater
than freezing and less than boiling.

The nominal and ordinal values taken by physical variables are said to
occur in a gquantityv space [Forbus 1984, Kuipers 1984]. The quantity space
is a partial ordering on the physical variable values it contains. The par-
tial ordering occurs because not all comparisons are relevant to understand-
ing the physical system qualitatively. For example, consider a valve
between two tanks, A and B. When the valve is opened, the resulting
behavior is determined by the pressures in two tanks. The pressure at other
unconnected points in the system is unrelated to the above behavior.

AN EXPLORATORY EXPERIMENT

An exploratory experiment was conducted to observe the strategies sub-
jects used to diagnose the ORS. Three Georgia Tech students were used as
subjects. The use of college students is usually considered a compromise in
experimental research. Since some space shuttle astronauts have been
engineers, this compromise is reasonable in this situation.

The training contained both theoretical and practicai elements. First,
the basics of gas and fluid transfer were reviewed. Second, there was an
explanation of the normal and malfunction behavior of each component.
Third, subjects were told how to test for a failed component and how to
operate the system.
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The subjects then solved five single failure malfunctions. The
failures included two leaking valves, a ruptured pipe, a pressure transducer
that always read high, and a relief valve that opened inappropriately. The
data collected included a time-stamped record of the ORS commands issued and
a tape recording of the subject’s verbal protocols [Ericsson and Simon
1984]. The time to solution ranged from 3.6 to 31.1 minutes showing an
average of 14.2 with a standard deviation of 8.2 minutes.

A Post-hoc Analysis of Performance Data

The data from our preliminary experiment suggest several interesting
characteristics of human diagnosis behavior, and which in turn suggested
some directions for computer aiding. First, the time spent for a successful
diagnosis is strongly related with the number of information gathering
actions (IGA) (r = 0.79) and the average time between actioms (r = 0.77).
The latter two variables were not stromgly correlated (r = 0.21). The
implication of this is reducing the number of information gathering actions
(IGA) is an important goal for improving diagnostic performance.

Second, we classified IGA“s into effective ones (EIGA), which reduced
the size of feasible hypothesis set, and ineffective ones (IIGA), which did
not. We found that the number of EIGA is invariant among subjects and is
also not significantly correlated with the total number of IGA. The total
number of IGA is correlated with IIGA (corr.= 0.98), which outnumbered EIGA
by 2.5 : 1. This suggests that a problem is solved by collecting the right
number of EIGA (largely determined by the complexity of the problem). A
better performance is possible when the effective actions are executed ear-
lier in the diagnosis.

Third, we investigated how well the subjects detect the abnormal
behavior of the system. We assessed the delay in diagnosis due to failures
to collect information that would have revealed the abnormal system
behavior. The delay showed high correlation (r = .79) with the number of
ineffective actions. Also, 75%4 of effective actions were of abnormal
behavior, and the remaining 25% were of normal behavior (negative evidence).
Observations on abnormal behavior, if they are correctly interpreted, became
effective actions in almost all cases. Thus, abnormal behavior of the sys-
tem is probably the most important source of effective information.

The conclusion is that, to help the diagnosis, the cues for effective
actions need to be given. Abnormal system behavior is worth watching for
this purpose. When designing an aid, a major advantage of using abnormal
behavior is that inferring or requesting the human”s current hypothesis is
not necessary.

. of S .

There appeared to be three strategies that subjects used: hypothesis-
driven evaluation, data-driven evaluation, and topographic search.
Hypothesis—driven evaluation starts with the planning of a test procedure
for a given hypothesis. The hypothesis needs to be explicit enough to
enable the prediction of its resulting system behavior. A test plan would
be diagnostic if, given that the hypothesis is true, the response of the
system to the test is unique to the hypothesis. When a sufficiently diag-
nostic test has been planned, the test is executed and its result evaluated.
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This evaluation tends to be short because it has already been determined
what the results might be.

With data-driven evaluation, the subject first examines a piece of data
to determine if it is worth closer attention. This examination is done by
comparing the data to expected system behavior. If the data turns out to be
unexpected (i.e., not explained in terms of previously observed symptoms OT
normal behavior), then hypotheses are formulated to explain the data.
Whether the formulation is successful or not, this piece of data is remem-
bered by the diagnoses as another symptom to be used later during diagnosis.

Topographic search seems to help reduce the mental workload in diag-
nosis. Both above evaluation strategies involve deep reasoning with func-
tional causalities. With deep reasoning, the former deduces necessary data
from a given hypothesis while the latter formulate and evaluate hypotheses
from the given data. Topographic search [Rasmussen 1984], without such a
deeply based hypothesis, is used to find data. For instance, the sensor
near the suspected component are read in hope that the reading may give some
diagnostic information. An example of topographic search of hypotheses is
suspecting nearby components when a sensor reading is out of the mnormal
range. The differentiation of a single general hypothesis to several more
specific hypotheses can be considered as topographic search.

AIDING WITH A QUALITATIVE MODEL

This section describes how the qualitative model is used as a founda-
tion for aiding. First, each window of the interface will be described.
Four different aiding strategies and the motivation for each of them will
then be presented. Each strategy emphasizes different type of aiding infor-
mation.

ORS Intexrface

The interface has four windows: schematic, interaction, sensor display,
and hypotheses (Figure 2). The schematic window displays a schematic
diagram of the ORS. The schematic always shows the commanded state of the
valves. First, tank 2 pressure is reduced by momentarily opening valves 10,
11, 13, and The interaction window is where the operator”s commands are
echoed by the interface. The commands available to the operator include the
following:

(1) Opening and closing valves.

(2) Comparing two pressures. On a real physical system, the numerical
pressure could be displayed on the schematic. When a qualitative
model is used to simulate the physical system, there is mno absolute
scale in general to which a pressure can be referred. Instead, a
pressure can be compared to other pressures in the system by the
relations less—~than, equal-to, or greater-than.

(3) Display of the first derivative of a pressure (positive, zero, or
negative).

And, when the corresponding aiding feature (it is described more fully in a
later section) is available,
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Figure 2. The operator's display.

(4) Turning the what-if model on and off.
(5 Making state assumptions in the what-if model.

The sensor display contains the output from the sensor display com-
mands: the relationship between two pressures or the first derivative of a
pressure. When appropriate aiding features are activated, suggested sensor
readings will also be displayed in this window.

The hypotheses window displays a set of hypotheses that are set by the
operator. These hypotheses are simply state assignments to components (e.g.,
valve 13: leaking). Pipes, which do not have names displayed in the
schematic, are designated as left or right to named components such as
valves and orifices. For example, the pipe between valve 8 and orifice 4 is
designated either (r v8) or (1 o4). The operator can freely add or delete
the hypotheses.

Aiding Approaches

Based on observed human strategies of diagnosis, four aiding approaches
seem to deserve evaluation. Each approach emphasizes different information
and uses an appropriate communication mode for the kind of information.

Iopographic Aidipg. The first and second aiding approaches are based

on two presumed forms of operator cognitive processing. First, the operator
must observe and infer what the system is actually doing. This processiug
is termed O (Observed) and is concerned with flows, leaks through valves,
leaks out of pipes, and the general vicinity of the fault. Second, the
operator needs to generate normal system behavior to compare with observed
behavior. This processing is termed N (Normal). Two obvious forms of aiding
are to generate O and N so that the operator does pot have to devote cogni-
tive processing to generating them. To produce 0O, the aid integrates the
information from the pressure sensors to which it has continuous access.
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Like a human operator, the aid has to guess the actual behavior from the
sensor information since it cannot know the real system state. In contrast,
N is generated by the qualitative model under the assumption that every com—
ponent obeys the command.

0 and N are displayed topographically. For both O and N, the aid
displays two forms of system behavior: equal pressure paths and mass flow
paths. The former is the set of components that should be at equal pressure
given the commanded valve positions. Whenever the operator creates an equal
pressure path by opening a valve, the path is highlighted. Similarly, a mass
flow path created by an operation is highlighted as long as it exists.

Figure 3 is an example of N display. Opening valve 9 was the latest
change. This would make, if the system were fault-free, the pressure equal
through the highlighted path. First, tank 2 pressure is reduced by momen-
tarily opening valves 10, 11, 13, and First, tank 2 pressure is reduced by
momentarily opening valves 10, 11, 13, and

Figure 4 shows the same configuration as Figure 3, except that the O
display (rather than N) is activated. When valve 9 was opened, the pressure
p2 began to decrease and pl increase. This leads the aid to believe there
is a mass flow from tank2 to tankl (the path is highlighted) in spite of the
closed positions of valve 8 and valve 15. However, since the aid cannot be
certain which valve is leaking, it highlights both paths. When a precise
conjecture is not possible, the aid will take a conservative position as in
this example. Quite naturally, O and N aiding cannot be used simultaneously.

Differencing Observed and Normal Behavioxr. The third aiding approach
is to suggest observations that reveal the differences between the observed
system behavior and the normal system behavior. This differemce will be
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Figure 3. The normal response (N).
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Figure 4. The observed response (0).

connection with the results of our preliminary experiment. Such a deviation
from normal behavior, when observed and correctly interpreted, helped effec-
tively reduce the size of the feasible hypothesis set. Figure 5 shows an
example of this feature”s display in the same situation as of Figure 3 and
4. The aid suggests, for example, to issue a command (i pl), which is to
inquire the first derivative of pl. When the operator follows this, he will
find pl is increasing, which is opposite to the commanded situation (no flow
should be possible from either GTK or TK2G/L). First, tank 2 pressure is
reduced by momentarily opening valves 10, 11, 13, and

Ibhe ¥What-if Model. The fourth, and the last, aiding feature is closely
related to the above. This feature can use any hypothetical behavior
(denoted by H), instead of the normal behavior, with which to contrast the
observation. The operator can freely set or remove hypotheses. Then, the
aid will run a what-if model based on the hypotheses in place of the normal
model. Any discrepancies (denoted by O-H) will be reported in the same way.
If the operator”s hypothesis is a leak in v10, the feature would present a
display shown in Figure 6. First, tank 2 pressure is reduced by momentarily
opening valves 10, 11, 13, and Note that if no hypothesis is stated, the
recommendations would be the same as the previous example (i.e., O-B = O-N
if H = N). Further, if the hypothesis is incorrect, the aid will recommend
readings. If the hypothesis is correct, the aid will be silent.
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Figure 5. Deviation from normal behavior (0-N).
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Figure 6. Deviation from hypothetical behavior (0-H).
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Comments

The first question is which of O and N aiding (they are mutually
exclusive) will work better. The answer should be related to the human
strategies and other characteristics of the human®s information processing.

Second, is 0-N, which is more specialized and explicit, better than 0
or N, which are more general? The advantages of the latter are their gen-
erality, topographic presentation, and hence, easy communication. Their
disadvantage is that they require interpretation and do not direct the
operator to take a specific action.

Third, effectiveness of O-H depends on system complexity. With high
complexity, the disadvantage of explicit hypothesis communication may be
offset by the complex calculations the aid can do for the operator. This
feature will be evaluated only on one system, 80 complexity effects cannot
be measured. Therefore, the evaluation of this feature will depend on its
correct ugse rather than a performance improvement.

The common motivation for these aiding approaches is to perform compu-
tations that the operator is believed to make when diagnosing the system.
As much as these computations are related to the human’s mental model, the
qualitative model in the aid may be an appropriate vehicle to help or
replace the computations. There are two ways this approach might help.
First, the operator may have an incorrect or incomplete mental model.
Second, the operator may have difficulty integrating correct component
behavior into correct system behavior because of cognitive limitations. The
aiding approaches support different uses of the mental model: to envision
the normal or hypothetical behavior, to conjecture the actual behavior, and
to describe the difference between behaviors of two (e.g., O and H) models.
This does not mean the operator need not understand the system at all; he or
she still needs to understand the meaning of aid”s information and select
the hypotheses.

CONCLUSION

An aid has been described for novel fault diagnosis in complex systems.
To the best of our knowledge, this aid is unique in the following ways.
First, the emphasis is on novel rather than routine faults. Second, it con-
tains a qualitative model that may correspond to the human®s internal model
of the system. This model represents knowledge only of how the systen
works. Many of the proposed aiding schemes are proceduralized fault
finders: they tell the operator what action to take. Third, the qualita-
tive model is the basis for much of the aiding that takes place. Fourth,
the interface specifically attempts to mitigate some human decision-making
suboptimalities during fault diagnosis.
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