• Title/Summary/Keyword: deep deck plate

Search Result 16, Processing Time 0.018 seconds

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

Experimental and numerical study on pre-cambered deep deck-plate system

  • Seung-Ho, Choi;Inwook, Heo;Khaliunaa, Darkhanbat;Sung-Mo, Choi;Kang Su, Kim
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.445-453
    • /
    • 2022
  • A pre-cambered deep deck-plate system has been developed that can realize a long span by offsetting the deflection caused by a construction load. In this study, finite element (FE) analysis is performed to examine the preload-camber relationship introduced into a deck and calculate the deflection reflecting the ponding effect that arises during concrete pouring. The FE analysis results showed that the stress of the bottom plate was half of the yield stress when the pre-camber of approximately 30 mm was introduced. Based on the FE results, a full-scale deep deck-plate is fabricated, a pre-camber is introduced, and concrete is poured to measure deflection. A deflection calculation formula that reflects the ponding effect is proposed, and the deflections yielded by the proposed model, experimental results, and FE results are compared. Results show that the proposed model can accurately estimate the deflection of non-supported deep deck-plate systems after concrete is poured.

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

Flexural Capacity of the Profiled Steel Composite Beams -Deep Deck Plate- (강판성형 합성보의 휨성능 평가 -춤이 깊은 합성데크-)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jeong, Sang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.247-258
    • /
    • 2007
  • This paper describes the results of an experimental study on the new type of encased composite beams that use deep deck plates, which could reduce the story height of buildings by controlling the bottom flange of steel beams. The profiled steel beam was thus developed. It was advantageous to the long span of the buildings. Seven full-scale specimens were constructed, and simply supported bending tests were conducted on the encased composite beams with different steel plate thicknesses, with and without shear studs, reinforcing bars, and web openings. The test results showed that the encased composite beams that were developed in this study had sufficient composite action without additional shear connectors due to their inherent shear-bond effects between the steel beams and concrete.

A Study of Structural Performance of Self-Drilling Screw Connections (직결나사 연결 접합부에 관한 구조성능평가 연구)

  • Park, K.Y.;Jeon, S.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.543-553
    • /
    • 2013
  • As the deep deck plate has the shape of open cross section, It can cause structural problems such as bending torsions due to instability of the section. There are a number of fasteners types which are frequently used on light gage steel diaphragms such as bolts, rivets, welds, and screws. In this study, the structural capacity of the self drilling screw connection between the deep deck and the reinforced cap plate was evaluated by experimental variables such as the arrangement method, numbers of screw, pitch of screw, and head plate thickness.

Flexural Capacity of the Encased(Slim Floor) Composite Beams with Web Openings -Deep Deck Plate and Asymmetric Steel Beam to be Welded Cover Plate- (매립형 (슬림플로어) 유공 합성보의 휨성능 평가 -춤이 깊은 데크플레이트와 비대칭 H형강 철골보-)

  • Kwak, Myong Keun;Heo, Byung Wook;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.575-586
    • /
    • 2004
  • This paper presents an experimental study on the flexural capacity of an encased(slim-floor) composite beam, which is a wider plate under bottom flange of H-beam with web openings. Five simple full-scale bending tests were conducted on the encased(slim-floor) composite beams at varying steel beam heights (250mm and 300mm), positions of web openings, and loading conditions. The test results revealed that the web-open encased composite beam had sufficient composite action, without any additional shear connection devices, because of the inherent shear-bond effects between the steel beam and the concrete, and a stable structural performance without web-opening reinforcements.

Improvement of Flexural Performance for Deep-Deck Plate using Cap Plate (캡플레이트를 이용한 장스팬용 춤이 깊은 데크의 휨성능 개선)

  • Park, K.Y.;Nam, Y.S.;Choi, Y.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.555-567
    • /
    • 2013
  • Slim floor system using deep decks has been developed and employed in Europe to reduce the floor height of steel structures. Although long span buildings involving the issue of reducing floor height are being increasingly built in Korea, employing deep decks in more than 7m long span structures is likely to cause problems associated with excessive deflection. This study is applied to the long-span concrete casting of the deep deck plate usability of deflection due to bending and torsional instability of open cross-section, as a way to improve the problem of cap plates are suggested, and the optimum length of reinforcement and location are derived from theoretic estimation. The cap plates are placed on the deep decks with regular intervals to overcome the instability of open sections, improve the stiffness of the sections and control the deflection at the centers. The improvement in flexural capacity associated with the location of the cap plates and the length of reinforcement are verified through analysis and test.

Deflection Evaluation of the Constructing-load Carrying Capacity for Deep Decking Floor System Reinforced with Both Ends Cap Plates (캡 플레이트로 단부 보강한 춤이 깊은 데크의 시공중 처짐성능평가)

  • Jeon, Sang Hyun;Kyung, Jae Hwan;Kim, Young Ho;Choi, Sung Mo;Yang, Il Seung
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • If of application of the deep deckting floor in long span more than 6m, the deflection caused by the construction load occurred high. Because the constructing-works and safety by this deflection, take actually supports to laborers working on the deck. However, installed supports are having difficultly such as the restricted passage, deficiency of working space, and lowering of efficiency. And toward-opening deck is seen as local buckling of web plate, flexural-torsional buckling, and gradually opening of corrugated decking. In this study, we will suggest a deep decking floor system that reinforced with both ends cap plates for toward-opneing decking change from opening to closing. The constructing deflection of a deep decking more than 6m must be satified 30mm and L/180 as proposed. Full-scale field tests loading by sand conducted a deep decking reinforced with and without cap plate. In conclusion, the specimen reinforced with cap plates have shown that to ensure the negative moment $wl^2/18$. And constructing-deflection of deep decking shown that to satisfy the evaluation value (L/180 or 30mm).

A Study on the Standard of Ship Hull Construction for Aluminium Alloys Fishing Boats (알루미늄 합금제 어선건조를 위한 선체구조기준 설정에 관한 연구)

  • Hong, Bong-Ki
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.12 no.1
    • /
    • pp.22-82
    • /
    • 2000
  • The ship hull construction materials of fishing boat has changed in order that wooden, steel, and fiber glass reinforced plastic(FRP). The fishing boat made from FRP has increased every year because that materials has proved excellent of the characteries for fishing boats construction members. Recently, FRP tend towards evasion for the pollution of air enviroment. Therefore. the materials of fishing boat construction must be exchanged by another one. Aluminium alloys must be recommended for fishing boats construction mateials because that is light weight and corrosion resisting in the sea water. Regulation of the standard of ship hull construction for aluminium alloys fishing boats did not enact laws in the interior now. Therefore, this regulation was studied by the following items. that is Rudder, Bottom construction, Side hull plate construction, Deck plate construction, piller. Water tight bulkhead, Deep tank, Fish tank, Stern construction, Superstructure, Deck house construction, Hatch, Engine room opening, Hatch opening, Bulwark, Welding and Rivet etc. A study on the regulation will be contributed to enact laws for fishing boat construction of aluminium alloys.

  • PDF