• Title/Summary/Keyword: decreased forest

Search Result 1,698, Processing Time 0.032 seconds

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.

Unusual Delay of Heading Date in the 2022 Rice Growth and Yield Monitoring Experiment (2022년도 벼 작황시험에서 관찰된 출수기 지연 현상 보고)

  • HyeonSeok, Lee;WoonHa, Hwang;SeoYeong, Yang;Yeongseo, Song;WooJin, Im;HoeJeong, Jeong;ChungGen, Lee;HyeongJoo, Lee;JongTae, Jeong;JongHee, Shin;MyoungGoo, Choi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.330-336
    • /
    • 2022
  • It is likely that the heading would occur early when air temperature increases. In 2022, however, the heading date was delayed unusually, e.g., by 3 to 5 days although temperature during the vegetative growth stage was higher than normal years. The objective of this study was to identify the cause of such event analyzing weather variables including average temperature, sunshine hours, and day-length for each growth stage. The observation data were collected for medium-late maturing varieties, which has been grown at crop yield experiment sites including Daegu, Andong, and Yesan. The difference in heading date was compared between growing seasons in 2021 and 2022 because crop management options, e.g., the cultivars and cultivation methods, were identical at those sites during the study period. It appeared that the heading date was delayed due to the difference in temperature responsiveness under a given day-length condition The effect of the temperature increase on the heading date differed between the periods during which when the day-length was more than 14.3 hours before and after the summer-solstice.. The effect of the temperature decrease during the period from which the day-length decreased to less than 14.3 hours to the heading date was relatively greater. This merits further studies to examine the response of rice to the temperature change under different day-length and sunshine duration in terms of heading.

Scenario-Based Analysis on the Effects of Green Areas on the Improvement of Urban Thermal Environment (녹지 조성 시나리오에 따른 도시 열환경 개선 효과 분석)

  • Min, Jin-Kyu;Eum, Jeong-Hee;Sung, Uk-Je;Son, Jeong-Min;Kim, Ju-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.1-14
    • /
    • 2022
  • To alleviate the urban heat island phenomenon, this study aims to quantitatively analyze the effects of neighborhood green spaces on the improvement of the thermal environment based on detailed scenarios of five types of green spaces, including parks, pocket parks, parking lot greening, roadside planting, and rooftop-wall greening. The ENVI-met 4.4.6v model, a microclimate simulation program, was used to analyze the effects of green spaces. As a result, it was found that the air temperature decreased as the planting density of the park increased, but the thermal comfort index PET, which is the degree of heat sensation felt by humans, was not directly proportional to temperature. The establishment of a pocket park reduced air temperature up to a radius of 56m, while the range of temperature reduction increased by about 12.5% when three additional pocket parks were established at 250m intervals. Unlike the air temperature, PET was only affected in the vicinity of the planted area, so there was no significant difference in the thermal comfort of the surrounding environment due to the construction of pocket parks. Changing the surface pavement from asphalt to lawn blocks and implementing rooftop or wall greening did not directly act as solar shading but positively affected air temperature reduction; PET showed no significant difference. Roadside planting showed a higher air temperature reduction effect as the planting interval was narrower, but PET was not directly proportional to tree density. In the case of shrub planting under trees, it did not significantly affect the air temperature reduction but positively affected the improvement of thermal comfort. This study can outline strategies for constructing neighborhood green spaces to solve the urban heat island phenomena and establish detailed strategies for efficient thermal environment improvements.

Correlation between litter decomposition rate of Quercus mongolica leaf and microclimatic factors at Mt. Jeombongsan (점봉산 신갈나무 낙엽의 분해율과 미기상요인과의 상관관계 분석)

  • Ho-Yeon Won;Young-Sang Lee;Jae-Seok Lee;Il-Hwan Lee
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.455-463
    • /
    • 2022
  • To understand functional changes of forest ecosystems due to climate change, correlation between decomposition rate of leaf litter, an important function of forest ecosystems, and microclimatic factors was analyzed. After 48 months elapsed, percent remaining weight of Quercus mongolica leaf litter was 27.1% in the east aspect and 37.0% in the west aspects. Decay constant of Q. mongolica leaf litter was 0.33 in the east aspect and 0.25 in the west aspect after 48 months elapsed. Initial C/N ratio of Q. mongolica leaf litter was 38.5. After 48 months elapsed, C/N ratio of decomposing Q. mongolica leaf litter decreased to 13.43 in the east aspect and 16.72 in the west aspect. Average air temperature and soil temperature during the investigation period of the research site were 8.2±9.0 and 9.1±9.3 in the east and 8.5±7.4 and 9.3±7.3℃ in the west aspect, respectively, with the west aspect showing higher air and soil temperatures. Soil moisture showed no significant difference between east and west aspects (average soil moisture: 19.4±11.0% vs. 20.5±5.7%). However, as a result of analyzing the correlation between decomposition rate and microclimatic factors, it was found that the decomposition rate and soil moisture has a positive correlation(r=0.426) in the east aspect but not in the west aspect. Our study shows that the correlation between decomposition rate and microclimatic factors can be significantly different depending on the direction of the aspect.

Yield, Nitrogen Use Efficiency and N Uptake Response of Paddy Rice Under Elevated CO2 & Temperature (CO2 및 온도 상승 시 벼의 수량, 질소 이용 효율 및 질소 흡수 반응)

  • Hyeonsoo Jang;Wan-Gyu Sang;Youn-Ho Lee;Pyeong Shin;Jin-hee Ryu;Hee-woo Lee;Dae-wook Kim;Jong-tag Youn;Ji-Won Han
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.346-358
    • /
    • 2023
  • Due to the acceleration of climate change or global warming, it is important to predict rice productivity in the future and investigate physiological changes in rice plants. The research aimed to explore how rice adapts to climate change by examining the response of nitrogen absorption and nitrogen use efficiency in rice under elevated levels of carbon dioxide and temperature, utilizing the SPAR system for analysis. The temperature increased by +4.7 ℃ in comparison to the period from 2001 to 2010, while the carbon dioxide concentration was held steady at 800 ppm, aligning with South Korea's late 21st-century RCP8.5 scenario. Nitrogen was applied as fertilizer at rates of 0, 9, and 18 kg 10a-1, respectively. Under conditions of climate change, there was an 81% increase in the number of panicles compared to the present situation. However, grain weight decreased by 38% as a result of reduction in the grain filling rate. BNUE, indicative of the nitrogen use efficiency in plant biomass, exhibited a high value under climate change conditions. However, both NUEg and ANUE, associated with grain production, experienced a notable and significant decrease. In comparison to the current conditions, nitrogen uptake in leaves and stems increased by 100% and 151%, respectively. However, there was a 25% decrease in nitrogen uptake in the panicle. Likewise, the nitrogen content and NDFF (Nitrogen Derived from Fertilizer) in the sink organs, namely leaves and roots, were elevated in comparison to current levels. Therefore, it is imperative to ensure resources by mitigating the decrease in ripening rates under climate change conditions. Moreover, there seems to be a requirement for follow-up research to enhance the flow of photosynthetic products under climate change conditions.

Life Cycle Assessment and Improvement Assessment for Manufacturing Process of Corrugated Package (골판지 포장재의 생산공정에 대한 LCA 수행 및 친환경 공정개선)

  • Jo, Hyun Jung;Hwang, Yong Woo;Park, Kwang Ho;Jo, Byoung Muk;Kim, Hyoung Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.620-627
    • /
    • 2005
  • In this study, life cycle assessment (LCA) on one of corrugated cardboard box as functional unit was carried out. System boundary of this study divided according to raw material acquisition, corrugated cardboard manufacture and corrugated cardboard box manufacture stage. And environmental impacts are evaluated on each stage and sub-process. The impact categories are classified into eight categories of abiotic resource depletion, global warming stratospheric ozone depletion, photochemical oxidant creation, air acidification, eutrophication, ecotoxicity and human toxicity. From the results, it is found that environment impacts at raw material acquisition stage is the highest as about 92% of whole stage due to liner board manufacture stage. The highest environmental impacts at sub-process of corrugated cardboard and box manufacture stage is a single facer and D/W backer process that included as main process in corrugated cardboard manufacture, and is caused by used energies like electricity, B-C oil, and etc. And then diagnosis for clean production process system of package is carried out. Through diagnosis, on loss rate is reduced and inner pressure intensity of box is improved. After improvement, environmental impact was decreased about 3.8% compared with before improvement.

A Study of the Butterfly Community of Mt. Gyeryong National Park, Korea (계룡산국립공원의 나비류 군집에 관한 연구)

  • Jeon, Sung-Jae;Cho, Young-Ho;Han, Yong-Gu;Kim, Young-Jin;Choi, Min-Joo;Park, Young-Jun;Nam, Sang-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.348-361
    • /
    • 2012
  • Altitude is a factor that plays an important role in the diversity, richness and composition of species. Recently, much attention has been paid to the distribution of butterflies and insects according to altitude. The purpose of this article is to propose a method to preserve and manage species efficiently by reviewing the distribution of butterflies according to different altitudes in Mt. Gyeryong National Park. This study found that the number of species and individuals decreased as the altitude increased, possibly due to the increased amount of shade caused by the crown density. When analyzing the factors influencing the distribution of species other than altitude, it was found that the slope, vegetative colonies and hydrosphere distance were correlated with the change in species distribution. As these species are closely related to food plants, it may save time and reduce the cost as well as allow an efficient evaluation of the bio-diversity if these species are selected as biological indicator species suitable for detecting the changes in the forest. It is judged to be a more efficient means of species preservation to accumulate and quantify the materials regarding environmental elements such as the climate, microclimate and food plants, as this would allow the butterfly distribution to be estimated.

Protective Effect of Ethyl Acetate Fraction from Hibiscus Sabdariffa L. Extract against High Glucose-induced Oxidative Stress (고포도당으로 유도된 산화 스트레스에 대한 로젤 아세트산에틸 분획물의 신경세포 보호효과)

  • Seung, Tae Wan;Park, Sang Hyun;Park, Seon Kyeong;Ha, Jeong Su;Lee, Du Sang;Kang, Jin Yong;Kim, Jong Min;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.284-288
    • /
    • 2016
  • To investigate the physiological effect of Hibiscus sabdariffa, in vitro antioxidant activities and neuroprotective effects against high glucose-induced oxidative stress were examined. The ethyl acetate fraction (EtOAc-Fr) from H. sabdariffa contained high total phenolic contents compared with other fractions but total anthocyanin contents were lower than 80% Ethanol extract showed the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging activity and malondialdehyde inhibitory effect. Furthermore, the EtOAc-Fr decreased the intracellular reactive oxygen species level, and protected the neuron-like PC12 cells from high glucose-induced cytotoxicity. The EtOAc-Fr also presented inhibitory effects against acetylcholinesterase as an acetylcholine hydrolase enzyme. Finally, chlorogenic acids as main phenolics by high performance liquid chromatography analysis.

Ameliorating Effect of Water Extract from Dendropanax morbifera Lev. on Memory Dysfunction in Streptozotocin-induced Diabetic Rats (스트렙토조토신(Streptozotocin) 유발 당뇨 동물모델에서 황칠나무 잎 추출물의 학습 및 기억력 개선 효과)

  • Kim, Ji Hye;Bae, Dong hyuck;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.275-283
    • /
    • 2016
  • An anti-amnesic effect of water extract from Dendropanax morbifera Lev. leaves (DMW) on memory dysfunction in streptozotocin-induced diabetic rats was investigated to assess its potential industrial value. Daily administration of DMW (11 weeks) significantly reduced serum glucose, insulin, and blood urea nitrogen (BUN) levels increased by an intraperitoneal injection of streptozotocin (STZ, 55 mg/kg). In addition, the administration of DMW decreased escape latency and increased the time spent in the platform quadrant in the Morris water maze test. Step-through latency in a passive avoidance test was also improved. Finally, DMW produced ameliorating effects on STZ-induced cholinergic deficit through an inhibitory effect on acetylcholinesterase and the increment of acetylcholine level in the hippocampus. These results suggest that DMW might be used as a natural substance for improving diabetic induced cognitive impairment.

Measurement and Comparison of Morphology of Developmental Stages of Chestnut Weevil, Curculio sikkimensis(Coleoptera: Curculionidae) (밤바구미 (Curculio sikkimensis)의 발육단계별 형태측정 및 비교)

  • Kim, Young-Jae;Moon, Sang-Rae;Yoon, Chang-Mann;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.49 no.1
    • /
    • pp.11-16
    • /
    • 2010
  • Measurements were made on morphology of each developmental stages of the chestnut weevil, Curculio sikkimensis, reared in the laboratory and field from 2003 to 2006. The size of egg was 0.8${\pm}$0.03 mm. The escaping larvae were measured, in average, as 98 mg in body weight, 10.65 and 3.99 mm in body length and width, and 1.70 mm in head width. Pupal size of female and male was 7.01 and 6.53 mm, respectively. The fresh weight (0.343 g), body length (7.76 mm) and width (3.38 mm), and head width (1.60 mm) of female adults were significantly bigger than those (0.268 g, 7.14 mm, 3.01 mm and 1.37 mm, respectively) of male adults. Proboscis length (6.53 mm) and antennal length (5.47 mm) of female was also significantly longer than those (3.56 and 4.63 mm, respectively) of male. The larvae of C. sikkimensis overwintered for 1~3 years and their body weight, body length, and body width were decreased. The ratio between proboscis length and body length, the basipodite position attached to the proboscis, and shape of the sex organ on the abdominal end could be used to discriminate sexes.